TECHNICAL MEMORANDUM

30 October 2023

WAE230033-01 001 TM Rev1

To: Luke Aveling

From: Michael Carmichael

e-mail: lukea@omniwa.com.au

Sender's email: michael.carmichael@galtgeo.com.au

SOIL CONTAMINATION ASSESSMENT – PROPOSED CHILDCARE CENTRE 184A SHEPPERTON ROAD, EAST VICTORIA PARK

Dear Luke,

1. INTRODUCTION

This report presents the findings of Galt Environmental Pty Ltd's (Galt's) soil contamination assessment for the proposed childcare centre located at 184A Shepperton Road, East Victoria Park (the site).

The location of the site relative to the surrounding area is shown on Figure 1.

2. SITE DESCRIPTION AND PROPOSED DEVELOPMENT

Publicly available aerial imagery indicates the site is approximately 0.17 ha in plan. At the time of fieldwork, the site was fully developed with a commercial healthcare business operating at the premises.

The proposed childcare development is considered a 'sensitive land use' under the Contaminated Sites Act 2003. As such, a soil contamination assessment is required to demonstrate the site is free from contamination and appropriate for its intended use. Additionally, we understand the assessment is an Education and Care Regulatory Unit (ECRU) requirement.

We are not aware if the site is being demolished to make way for the childcare centre or redeveloped in its current form. Supplied drawings indicate the building is a similar configuration/orientation to the current building on site, and may be renovated with the addition of outdoor play areas.

Supplied drawings are presented in Attachment A.

3. **PROJECT OBJECTIVES**

The objectives of the study were to:

- assess the nature and extent of soil contamination (if any) across the site; and
- make recommendation for further investigation and/or remedial works (if required).

4. FIELDWORK

Fieldwork was conducted on 15 May 2023 and comprised:

- a walkover of the site including taking photographs;
- drilling of boreholes at 6 locations extending to depths of between 0.9 m to 2.0 m; and

Galt Environmental Pty Ltd

ABN: 96 520 810 622

◆ collection of soil samples at the surface and 0.5 m intervals until the termination of each borehole.

General

An environmental scientist conducted the walkover survey, drilled the boreholes, logged the materials encountered in the boreholes, conducted the field testing and collected samples for laboratory testing.

Test locations are shown on Figure 1 and photographs of the site are presented in Attachment B. Details of the tests are presented in Table 1.

		Table 1: 9	Summary of Tests	
Test Name	Test Depth (m)	Depth to Groundwater (m)	Reason for Termination	Stratigraphy
BH01	2.0		Target Depth	
BH02	2.0		Target Depth	
BH03	2.0	CNE ¹	Target Depth	SAND
BH04	0.9	GINE	Refusal	SAND
BH05	2.0		Target Depth	
BH06	2.0		Target Depth	

Notes: 1. GNE – Groundwater Not Encountered

Boreholes

The boreholes were drilled using a 90 mm nominal diameter hand auger by a representative from Galt. Borehole reports are presented in Attachment C along with a method of soil description and a list if explanatory notes and abbreviations used in the reports. A photograph of the spoil recovered in each borehole is included at the foot of each of the borehole reports.

Soil Sampling

Soil samples were collected from the boreholes in accordance with the following Australian Standards (AS):

- AS 4482.1:2005 Guide to the Investigation and Sampling of Sites with Potentially Contaminated Soil Part I Non-Volatile and Semi Volatile Compounds; and
- AS 4482.2:1999 Guide to the Investigation and Sampling of Sites with Potentially Contaminated Soil Part 2 Volatile Compounds;

Soil samples were collected at 0.5 m intervals at each borehole location using a new pair of disposable nitrile gloves. All soil samples were collected in laboratory supplied glass jars and stored on ice during fieldwork and transport to the laboratory to ensure that they arrived intact and at the appropriate temperature to ensure sample preservation.

5. LABORATORY ANALYSIS

Selected soil samples were analysed by Eurofins in their National Association of Testing Authorities (NATA) accredited laboratory for the following contaminants of potential concern (COPC):

- heavy metals;
- total petroleum hydrocarbons (TPH);
- benzene, toluene, ethylbenzene, xylene and naphthalene (BTEXN);

- polycyclic aromatic hydrocarbons (PAH).
- OC/OP pesticides; and
- asbestos identification (NEPM).

All laboratory analysis was undertaken using NATA accredited methods of analysis. Environmental laboratory test results are presented in Attachment D.

6. SITE CONDITIONS

6.1 Geology

The Perth sheet of the 1:50,000 scale Environmental Geology series map indicates that the area is underlain by Bassendean Sand of eolian origin.

We encountered sandy soils consistent with the geological mapping.

6.2 Subsurface Conditions

The subsurface conditions are broadly consistent and can be summarised as comprising SAND (SP) (possibly fill) fine to medium grained, sub-angular to sub-rounded, yellow to brown, with roots and organics in top 200 mm, and possible trace gravel.

6.3 Groundwater

The Perth Groundwater Atlas (1997) shows the maximum historical groundwater level to be around RL 11.0 m AHD. This is within about 5 m of the current ground surface. No groundwater was encountered during the course of the investigation.

6.4 Contaminated Sites

The Department of Water and Environment regulations (DWER) contaminated sites database indicates that site is not a registered contaminated site. We note that the publicly available database only lists sites classified as 'Remediated for restricted use', 'Contaminated – remediation required' and 'Contaminated – restricted use'.

7. ENVIRONMENTAL ASSESSMENT

7.1 Assessment Criteria

Regulatory assessment criteria for soil analysis were selected considering the existing land use, applicable soil beneficial uses and consistency with relevant published guidelines including the National Environmental Protection Council (2013) National Environmental Protection (Assessment of Site Contamination) Measure (NEPM).

Specifically, soil samples were assessed against the following:

- health investigation levels residential (HIL A); and
- health screening levels residential (HSL A).

7.2 Results

Results of the groundwater sampling are summarised in Table 2 and laboratory analytical results are shown on Attachment E.

• • ·				
Analyte	Results Range	Exceedances		
	Asbestos			
Asbestos (AF/FA)	< LOR ¹	None		
	Hydrocarbons			
BTEXN	< LOR	None		
TRH	< LOR	None		
РАН	< LOR	None		
	Metals			
Arsenic	< LOR	None		
Cadmium	< LOR - 0.1 mg/kg	None		
Chromium (III+VI)	1.3 – 12 mg/kg	None		
Copper	< LOR - 6.8 mg/kg	None		
Lead	5.4 – 51 mg/kg	None		
Mercury	< LOR - 0.04 mg/kg	None		
Nickel	< LOR - 1.5 mg/kg	None		
Zinc	18 – 170 mg/kg	None		
	Pesticides			
4,4-DDE	< LOR – 0.07 mg/kg	None		
Chlordane	< LOR – 0.03 mg/kg	None		
DDT	< LOR – 0.02 mg/kg	None		
Dieldrin	< LOR – 0.39 mg/kg	None		
Heptachlor Epoxide	< LOR - 0.01 mg/kg	None		
Other OC Pesticides	< LOR	None		
OP Pesticides	< LOR	None		

Table 2: Laboratory Analytical Results Summary

Notes 1. < LOR indicates the test result was less than the laboratory limit of reporting.

7.3 Summary

All contaminants of potential concern (COPC) were below the LOR and/or conformed to the adopted criteria. We note the presence of low-level concentrations of some metals and pesticides at the site which are likely attributed to historical land use (possibly pest control below footings etc. in the vicinity of former buildings etc).

8. CONCLUSION

Based on the results of the study, we consider it unlikely that the soil presents a risk to human health or the environment in context of the proposed land use. Furthermore, we consider that the site is suitable for the proposed land use (childcare centre).

9. CLOSURE

We draw your attention to Attachment F of this report, "Understanding your Report". The information provided within is intended to inform you as to what your realistic expectations of this report should be. This information is provided not to reduce the level of responsibility accepted by Galt, but to ensure that all parties who rely on this report are aware of the responsibilities each assumes in so doing.

GALT ENVIRONMENTAL PTY LTD

spo

Brad Palmer Environmental Scientist

Attachments

- A Supplied Drawings
- B Site Photographs
- C Borehole Reports
- D Laboratory Test Results
- E Soil Analytical Results
- F Understanding your Report

https://galtgeo.sharepoint.com/sites/WAE230033/Shared Documents/01 Omni SI Shepperton/03 Correspondence/WAE230033-01 001 TM Rev1.docx

O:\Projects\WAE\230033\01\04 MXD\WAE230033-01-001-G01.mxd (claire.doyle) 16/5/2023 10:33:14 AM

ATTACHMENT A

Supplied Drawings

Ground Floor - Exsiting

Distan hotter. Plan hotter, Build hotter	EXISTING BUILDING RE-FIT ON: Lot 7 (#184a) Shepperton Road East Victoria Park FOR: Omni Projects	SIGNATURES: OWNER: OWNER: BUILDER:	AMENDMI 10/01/23 06/02/23 01/03/23	ENTS: 1st Draft 2nd Draft 3rd Draft	A1 SHEET SHEET: 1 of 7 DRN: ss DATE: 11/01/2023 SCALE:1:100
	© copyright	DATE:			CONTRACT NO:

Ground Floor - Demolition

DA OMNI PROJECTS	EXISTING BUILDING RE-FIT ON: Lot 7 (#184a) Shepperton Road East Victoria Park FOR: Omni Projects	SIGNATURES: OWNER: OWNER: BUIL DER:	AMENDME 10/01/23 06/02/23 01/03/23	NTS: 1st Draft 2nd Draft 3rd Draft	A1 SHEET SHEET: 2 of 7 DRN: ss DATE: 11/01/2023 SCALE:1:100
	© copyright	DATE:			CONTRACT NO:

Ground Floor - Proposed

	EXISTING BUILDING RE-FIT ON:	SIGNATURES:	AMENDMEN	rs:	A1 SHEET
N	Lot 7 (#184a) Shepperton Road	OWNER:	10/01/23 06/02/23	1st Draft 2nd Draft 2rd Draft	SHEET: 4 of 7
	East Victoria Park		01/03/23		DRN: ss
PROJECTS	Omni Projects	OWNER:			DATE: 11/01/2023
Listen better. Plan better. Build better		BUILDER:			SCALE:1:100
	© copyright	DATE:			CONTRACT NO.

Areas. 0 - 241.93. 2 - 361.87. 3 +164.65. AMB WC2.81. BATH24.49. COTS18.53. DRYING CRT11.48. KITCHEN15.24. LDY5.30. NAPPY8.96. OFFICE/\nPROGRAM10.95. OUTDOOR ACTIVITY569.70. PLAYPEN5.54. PREP11.81. RECEPTION21.78. STAFF12.81. STORE16.50. UAT6.48. WIP2.12

	A: 241.41 m ²			
	EA ET	1800h brick wall 26.620		Building and Site Criteria Play Area: Capacity: 82 Indoor:- Required: 266.5m ² Provided: 268.35m ²
			Areas . 0 - 2 41.93 . 2 - 3 61.87 . 3 + 164.65	Outdoor:- Required: 574.00m² Provided: 574.00m²
<u>Ground Floor - Preliminary</u> 1:100			. AMB WC 2.81 . BATH 24.49 . COTS 18.53 . DRYING CRT 11.48 . KITCHEN 15.24 . LDY 5.30 . NAPPY 8.96 . OFFICE/\nPROGRAM 10.95 . OUTDOOR ACTIVITY 560.70	0-2 years: 12 (3 Staff) 2-3 years: 30 (6 Staff) over 3 years: 40 (4 Staff) Total: 82 Total staff: 15
EXISTING BUILDING RE-FIT ON: Lot 7 (#184a) Shepperton Road East Victoria Park FOR: Omni Projects © copyright	SIGNATURES: AMENDMENTS: A1 SHEET 0WNER: 10/01/23 1st Draft SHEET: 5 of 7 00/02/23 2nd Draft DRN: ss 0WNER: DATE: 11/01/2023 BUILDER: SCALE:1:100 CONTRACT NO:	AREA CALCULATION . Building Addition 26.57 32,171 . Existing Building 468.83 118,585 . Site 1,188.70 139,119 . Parking 486.23 92,721 2,170.33 m² 2,170.33 m²	. OUTDOOK ACTIVITY 509.70 . PLAYPEN 5.54 . PREP 11.81 . RECEPTION 21.78 . STAFF 12.81 . STORE 16.50 . UAT 6.48 . WIP 2.12	Parking Required: 17 (inc. 1 Accessible) Provided on-site: 17 Adjacent parking: 9 Total available parking: 26

LOT MISCLOSE 0.001m

LOT MISCLOSE 0.003m

DISCLAIMER:

DISCLAIMER: Due to lack of survey marks/pegs, all building offset dimensions & features are approximate only and positioned from existing pegs/fences and walls which may not be on the correct alignment. Any design that involves additions to any structures shown or portion of structures remaining after the structures remaining aft

▲ Science any work is started on ster ▲ DISCLAIMER: Lot boundaries drawn on survey are based on landgate plan only. Survey does not include title search and as such may not show easements or other interests not shown on plan. Title should be checked to verify all lot details and for any easements or other interests which

and for any easements of other interests which may affect building on the property. DISCLAIMER: Survey does not include verification of cadastral boundaries. All features and levels shown are based on orientation to existing pegs and fences

only which may not be on correct cadastral alignm Any designs based or dependent on the location o existing features should have those features' location verified in relation to the true boundary. JDISCLAIMER: Survey shows visible features only and will not show locations of underground pipes or conduits for internal or mains services. Verification of the location of all internal and mains services should be confirmed prior to finalisation of any design work. JDISCLAIMER: Cottage & Engineering surveys accept no responsibility for any physical on site changes to the parcel or portion of the parcel of land shown on this survey including any adjoining neighbours levels and features that have occurred after the date on this survey. All Sewer details plotted from information cumpling by Water Corroration	lent. f								Scale 1:2 0 2	200	6 8	8
	87-89 Guthrie Street Osborne Park, WA 6017	JOB #	536163	GPS	Lat: -31.978609 Long: 115.904209		ROADS KERBS	Bitumen Non-Mount / Nil	ELEC.	U/Ground Yes		
(OTTAGE	PO Box 1611 Osborne Park Business Centre WA 6917		S #184a Shepperton Road	LOT	Lot 7 (Diag. 82368)		FOOTPATH	Concrete	WATER	Yes Check Alin	ta	
	P: (08) 9446 7361 E: perth@cottage.com.au W: www.cottage.com.au	LGA DRAWN	TOWN OF VICTORIA PARK	AREA DATE	1675m ² VOL. 1929 09 Nov 22	FOL.93 SSA No	DRAINAGE VEGETATIO	Good NLight Grass Cover	SEWER	Yes No	(Approximate Only Confirm With Shire	, ;)

Site Plan - EXISTING

Listen better. Plan better. Build better	EXISTING BUILDING RE-FIT ON: Lot 7 (#184a) Shepperton Road East Victoria Park FOR: Omni Projects	SIGNATURES: OWNER: OWNER: BUILDER:	AMENDME 10/01/23 06/02/23 01/03/23	NTS: 1st Draft 2nd Draft 3rd Draft	A1 SHEET SHEET: 6 of 7 DRN: ss DATE: 11/01/2023 SCALE:1:200 CONTRACT NO:
	© copyright	DATE:			-

LOT MISCLOSE 0.001m

LOT MISCLOSE 0.003m

Disclaimer: Due to lack of survey marks/pegs, all building offset dimensions & features are approximate only and positioned from existing pegs/fences and walls which may not be on the correct alignment. Any design that is not be and the correct alignment. design that involves additions to any structures shown or portion of structures remaining after the structures remaining aft

▲ Science any work is started on ster ▲ DISCLAIMER: Lot boundaries drawn on survey are based on landgate plan only. Survey does not include title search and as such may not show easements or other interests not shown on plan. Title should be checked to verify all lot details and for any easements or other interests which may affect huiding on the property.

and for any easements or other interests which may affect building on the property. DISCLAIMER: Survey does not include verification of cadastral boundaries. All features and levels shown are

only which may not be on correct cadastral alignm Any designs based or dependent on the location o existing features should have those features' location verified in relation to the true boundary. JDICLAIMER: Survey shows visible features only and will not show locations of underground pipes or conduits for internal or mains services. Verification of the location of all internal and mains services should be confirmed prior to finalisation of any design work. JDICLAIMER: Cottage & Engineering surveys accept no responsibility for any physical on site changes to the parcel or portion of the parcel of land shown on this survey including any adjoining neighbours levels and features that have occurred after the date on this survey. All Sewer details plotted from information cumpilod by Water Corresponsion	nent. f								Scale 1:2 0 2	200	1
	87-89 Guthrie Street Osborne Park, WA 6017	JOB #	536163	GPS	Lat: -31.978609 Long: 115.904209		ROADS KERBS	Bitumen Non-Mount / Nil	ELEC.	U/Ground Yes]
IOTTAGE	PO Box 1611 Osborne Park Business Centre WA 6917	ADDRES	S #184a Shepperton Road	LOT	Lot 7 (Diag. 82368)		FOOTPATH	Concrete	WATER	Yes	
SURVEYS	P: (08) 9446 7361 E: perth@cottage.com.au		TOWN OF VICTORIA PARK	AREA	1675m ² VOL. 1929	FOL.93		Sana Good	SEWER		y

Site Plan - PROPOSED

	EXISTING BUILDING RE-FIT ON:	SIGNATURES:	AMENDMENTS:	A1 SHEET
N	Lot 7 (#184a) Shepperton Road	OWNER:	10/01/23 1st Draft 06/02/23 2nd Draft 01/03/23 3rd Draft	SHEET: 7 of 7
	East Victoria Park	OWNER:		DRN: ss DATE: 11/01/2023
Listen better. Plan better. Build better	Omni Projects	BUILDER:		SCALE:1:200
	© copyright	DATE:		CONTRACT NO:

ATTACHMENT B

Site Photograph

www.galtenv.com.au 50 Edward Street OSBORNE PARK WA 6017 Galt Environmental Pty Ltd

ABN: 96 520 810 622

Photograph 1: Looking south east across the site adjacent Shepperton Road

Photograph 2: Looking north west across the site adjacent Shepperton Road

Photograph 3: Looking south west across the site

Photograph 4: Looking west across the site

Photograph 5: Looking south east across the eastern portion of the site

Photograph 6: Looking west towards the existing building (rear portion)

Photograph 7: Looking north across the carpark area

Photograph 8: Looking north east across the carpark area

ATTACHMENT C

Borehole Reports

www.galtenv.com.au 50 Edward Street OSBORNE PARK WA 6017 Galt Environmental Pty Ltd

ABN: 96 520 810 622

Sheet 1 OF 1

Job Number: WAE230033-01

Client: Omni Projects

GALT LIB 1.01

Project: Shepperton Road Childcare Centre 184A Shepperton Road, Victoria Park

Location:

Operator: TG Inclination: -90° Diameter: 90 mm

Date: 15/05/2023 Logged: ΤG Checked Date: 16/05/2023 Checked By: MC

	Drill	ling		Sampling		Field Material Description					
METHOD PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED GRAPHIC LOG SOIL CLASS	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY	SAMPLE		STRUCTURE AND ADDITIONAL OBSERVATIONS
HA	-	0.0			SANE SANE brown SANE brown SANE brown SANE brown SANE brown SANE brown SANE brown SANE brown SANE brown SANE brown SANE brown SANE brown SANE brown SANE brown SANE	D: fine to medium grained, sub-angular to sub-rounded, mottled n/yellow, with roots and organics in top 200 mm terminated at 2.00 m et depth ndwater not encountered	м		BH01/0.00 BH01/0.50 BH01/1.00 BH01/1.50		
						Sketch & Othe	Obse	rvatio	ns		
				BHES 8-9 (1928)							
Comments	:								See	e Explai	anatory Notes and Method of Soil Description sheets for details of abbreviations and basis of descriptions

Sheet 1 OF 1

Job Number: WAE230033-01

Client: Omni Projects

Comments:

Project: Shepperton Road Childcare Centre

184A Shepperton Road, Victoria Park

Location:

 Date:
 15/05/2023

 Logged:
 TG

 Checked Date:
 16/05/2023

 Checked By:
 MC

Drilling Field Material Description Sampling MOISTURE CONDITION CONSISTENCY DENSITY PENETRATION RESISTANCE WATER RECOVERED SOIL CLASS STRUCTURE AND SAMPLE OR FIELD TEST GRAPHIC LOG METHOD SOIL/ROCK MATERIAL DESCRIPTION SAMPLE ADDITIONAL DEPTH (metres) OBSERVATIONS DEPTH RL 0.0 BH02/0.00 SAND: fine to medium grained, sub-angular to sub-rounded, yellow, with roots and organics in top 200 $\rm mm$. •••• ۰. • . 0.5 BH02/0.50 ۰. • • • ۰. ₽ 1.0-SP М BH02/1.00 . • • • · . . ۰. 1.5 BH02/1.50 ·· . ۰. . ۰. -2.0-3H02/2.00 Hole terminated at 2.00 m Target depth Groundwater not encountered Sketch & Other Observations wallow seedents RHAR E-ITH POX3 4 52/8/50

Operator: TG

Inclination: -90°

Diameter: 90 mm

Sheet 1 OF 1

Job Number: WAE230033-01

Client: Omni Projects

Project: Shepperton Road Childcare Centre 184A Shepperton Road, Victoria Park

Location:

Diameter: 90 mm

Operator: TG

Inclination: -90°

Date: 15/05/2023 Logged: ΤG Checked Date: 16/05/2023 Checked By: MC

Drilling Field Material Description Sampling MOISTURE CONDITION CONSISTENCY DENSITY PENETRATION RESISTANCE WATER RECOVERED SOIL CLASS STRUCTURE AND GRAPHIC LOG METHOD SAMPLE OR SOIL/ROCK MATERIAL DESCRIPTION SAMPLE ADDITIONAL DEPTH (metres) FIELD TEST OBSERVATIONS DEPTH RL 0.0 BH03/0.00 SAND: fine to medium grained, sub-angular to sub-rounded, brown, with roots and organics in top 200 $\rm mm$. • • ۰. 0.5 . BH03/0.50 ۰. • . •••• Trace to with fine to medium grained, sub-angular to sub-rounded gravel . · . ₽ 1.0-SP D BH03/1.00 • . • • • · . . ۰. 1.5 BH03/1.50 · · · Trace clay, low plasticity . ۰. . ۰. -2.0-3H03/2.00 Hole terminated at 2.00 m Target depth Groundwater not encountered Sketch & Other Observations the state of the s Comments: See Explanatory Notes and Method of Soil Description sheets for details of abbreviations and basis of descriptions

Sheet 1 OF 1

15/05/2023

ΤG

Job Number: WAE230033-01

Client: Omni Projects

Project: Shepperton Road Childcare Centre Location: 184A Shepperton Road, Victoria Park

Operator: TG

Inclination: -90°

Diameter: 90 mm

Date: Logged: Checked Date: 16/05/2023

Checked By: MC

		Drill	ling		Sampling				Field Material Description					
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	Sample or Field Test	RECOVERED	GRAPHIC 1 OC	SOIL CLASS	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	S/	AMPLE	STRUCTURE AND ADDITIONAL OBSERVATIONS
			0.0					• • • • • •	SAND: fine to medium grained, sub-angular to sub-rounded, trace to with fine to medium grained, sub-angular to sub-rounded gravel (blue metal, limestone, building rubble), irregular size and shape Hole terminated at 0.90 m	М		BH04/0. BH04/0.	0.00	
10.14 DRIGELINON, NEW INVESTIGATION CONTRACTOR			1.5 						Refusal Groundwater not encountered					
			-					1	Sketch & Other	Obse	ervati	ions		
													See	Exploratory Notes and Method of Soil Descriptions beats for details of abbraviations and basis of descriptions
Co	mment	5:											See	Explanatory Notes and Method of Soil Description sheets for details of abbreviations and basis of descriptions

Sheet 1 OF 1

Job Number: WAE230033-01

Client: Omni Projects

02-21 Prj: GALT 1.01

GALT LIB 1.01.GLB

Project: Shepperton Road Childcare Centre

184A Shepperton Road, Victoria Park

Location:

HAND AUGLIN DON

Operator: TG

Inclination: -90°

Diameter: 90 mm

 Date:
 15/05/2023

 Logged:
 TG

 Checked Date:
 16/05/2023

 Checked By:
 MC

Drilling Sampling	Field Material Description							
METHOD PERETRATIONA PERETRATIONA PERETR	SOIL/ROCK MATERIAL DESCRIPTION	STRUCTURE AND SAMPLE ADDITIONAL COBSERVATIONS COBSERVATIONS						
 0.0	SAND: fine to medium grained, sub-angular to sub-rounded, mottled brown/yellow/black, trace to with fine to medium grained, sub-angular to sub-rounded gravel (blue metal, building rubble) <td< th=""><th>8H050.00 - 8H050.50 - 8H0571.00 - 8H0571.50 - 8H0572.00 -</th></td<>	8H050.00 - 8H050.50 - 8H0571.00 - 8H0571.50 - 8H0572.00 -						
	Sketch & Other Obse	vations						
Sketa 2 Other Observations								
Comments:		See Explanatory Notes and Method of Soil Description sheets for details of abbreviations and basis of descriptions						

Sheet 1 OF 1

Job Number: WAE230033-01

Client: Omni Projects

Comments:

Project: Shepperton Road Childcare Centre

184A Shepperton Road, Victoria Park

Location:

See Explanatory Notes and Method of Soil Description sheets for details of abbreviations and basis of descriptions

 Date:
 15/05/2023

 Logged:
 TG

 Checked Date:
 16/05/2023

 Checked By:
 MC

Drilling Field Material Description Sampling MOISTURE CONDITION CONSISTENCY DENSITY PENETRATION RESISTANCE WATER RECOVERED SOIL CLASS STRUCTURE AND GRAPHIC LOG METHOD SAMPLE OR SOIL/ROCK MATERIAL DESCRIPTION SAMPLE ADDITIONAL DEPTH (metres) FIELD TEST OBSERVATIONS DEPTH RL 0.0 BH06/0.00 SAND: fine to medium grained, sub-angular to sub-rounded, mottled . yellow/brown, with roots and organics in top 200 mm ••• ۰. 0.5 . BH06/0.50 ۰. • • • • ₽ 1.0-SP D BH06/1.00 . Dark brown • • • . ۰. 1.5 BH06/1.50 · . . . ۰. -2.0-Hole terminated at 2.00 m Target depth Groundwater not encountered Sketch & Other Observations assering BREDEME RHEE B-ISH BOX314 52/8/30

Operator: TG

Inclination: -90°

Diameter: 90 mm

ATTACHMENT D

Laboratory Test Results

Certificate of Analysis

Galt Environment P/L 50 Edward Street Osborne Park WA 6017

NATA Accredited Accreditation Number 2377 Site Number 2370

Accredited for compliance with ISO/IEC 17025–Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Report Project Name Project ID Received Date Date Reported	- ALL SRA/Results 989739-AIS VICTORIA PARK WAE230033 May 15, 2023 Jun 06, 2023
Methodology: Asbestos Fibre Identification	Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples (AS 4964-2004) and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques. NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.
Unknown Mineral Fibres	Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity. NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS 4964-2004 requires that these are reported as UMF unless confirmed by an independent technique.
Subsampling Soil Samples	The whole sample submitted is first dried and then passed through a 10 mm sieve followed by a 2 mm sieve. All fibrous matter greater than 10mm, greater than 2 mm as well as the material passing through the 2 mm sieve are retained and analysed for the presence of asbestos. If the sub 2 mm fraction is greater than approximately 30 to 60 g then a sub-sampling routine based on ISO 3082:2009(E) is employed. NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.
Bonded asbestos- containing material (ACM)	The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964-2004. NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.
Limit of Reporting	 The performance limitation of the AS 4964-2004 method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w). The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964-2004 and hence NATA Accreditation does not cover the performance of this service. NOTE: NATA News March 2014, p.7, states in relation to AS 4964-2004: "This is a qualitative method with a nominal reporting limit of 0.01% " and that currently in Australia "there is no validated method available for the quantification of asbestos". Reference is made to the NATA Specific Accreditation Criteria: ISO/IEC 17025 Application Document, Life Sciences - Annex, Asbestos sampling and testing This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the Government of Western Australia Department of Health Guidelines for the Assessment, Remediation and Management of Asbestos Contaminated Sites in Western Australia(WA DoH).

Client Sample ID			BH01/0.0	BH02/2.0	BH03/1.5	BH04/0.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			23-My0037394	23-My0037395	23-My0037396	23-My0037397
Date Sampled			May 15, 2023	May 15, 2023	May 15, 2023	May 15, 2023
	LOR	Linit				····· y ···, -···
Asbestos in Soils (AS 4964-2004)		Onic				
Sample Description	-	Comment	Brown coarse grain soil and rock			
Total Dry Mass	0.1	g	210	146	318	336
Total Analytical Fraction	0.1	g	210	146	318	336
Asbestos Detected	-	Yes/No	No	No	No	No
Materials Identified	-	Comment	N/A	N/A	N/A	N/A
Fibres Identified and estimated Asbestos Content (%)	-	Comment	Organic	Organic	Organic	Organic
Asbestos Content (as asbestos)	0.01	% w/w	< 0.01	< 0.01	< 0.01	< 0.01
Trace Analysis	0.1	g/kg	No trace asbestos detected			
Asbestos in Soils (ASC NEPM 2013)						
Asbestos Containing Materials (ACM) >7 mm						
Total ACM (>7 mm)	0.1	g	< 0.1	< 0.1	< 0.1	< 0.1
ACM % asbestos (weighted average)	-	%	N/A	N/A	N/A	N/A
ACM in Soil (as asbestos)*	0.01	% w/w	< 0.01	< 0.01	< 0.01	< 0.01
Fibrous Asbestos (FA) >7 mm						
Total FA	0.0005	g	< 0.0005	< 0.0005	< 0.0005	< 0.0005
FA % asbestos (weighted average)	-	%	N/A	N/A	N/A	N/A
FA in Soil (as asbestos)*	0.001	% w/w	< 0.001	< 0.001	< 0.001	< 0.001
Asbestos Fines (AF) <7 mm						
Total AF	0.0005	g	< 0.0005	< 0.0005	< 0.0005	< 0.0005
AF % asbestos (weighted average)	-	%	N/A	N/A	N/A	N/A
AF in Soil (as asbestos)*	0.001	% w/w	< 0.001	< 0.001	< 0.001	< 0.001

Client Sample ID			BH05/1.5	BH06/1.0	QC01
Sample Matrix			Soil	Soil	Soil
Eurofins Sample No.			23-My0037398	23-My0037399	23-My0037400
Date Sampled			May 15, 2023	May 15, 2023	May 15, 2023
	LOR	Unit			
Asbestos in Soils (AS 4964-2004)	÷				
Sample Description	-	Comment	Brown coarse grain soil and rock	Brown coarse grain soil and rock	Brown coarse grain soil and rock
Total Dry Mass	0.1	g	330	311	249
Total Analytical Fraction	0.1	g	330	311	249
Asbestos Detected	-	Yes/No	No	No	No
Materials Identified	-	Comment	N/A	N/A	N/A
Fibres Identified and estimated Asbestos Content (%)	-	Comment	Organic	Organic	Organic
Asbestos Content (as asbestos)	0.01	% w/w	< 0.01	< 0.01	< 0.01
Trace Analysis	0.1	g/kg	No trace asbestos detected	No trace asbestos detected	No trace asbestos detected
Asbestos in Soils (ASC NEPM 2013)					
Asbestos Containing Materials (ACM) >7 mm	1				
Total ACM (>7 mm)	0.1	g	< 0.1	< 0.1	< 0.1
ACM % asbestos (weighted average)	-	%	N/A	N/A	N/A
ACM in Soil (as asbestos)*	0.01	% w/w	< 0.01	< 0.01	< 0.01
Fibrous Asbestos (FA) >7 mm					
Total FA	0.0005	g	< 0.0005	< 0.0005	< 0.0005
FA % asbestos (weighted average)	-	%	N/A	N/A	N/A
FA in Soil (as asbestos)*	0.001	% w/w	< 0.001	< 0.001	< 0.001
Asbestos Fines (AF) <7 mm					
Total AF	0.0005	g	< 0.0005	< 0.0005	< 0.0005
AF % asbestos (weighted average)	-	%	N/A	N/A	N/A
AF in Soil (as asbestos)*	0.001	% w/w	< 0.001	< 0.001	< 0.001

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description

LTM-ASB-8020 Method for the Qualitative Identification of Asbestos in Bulk Samples

Testing SiteExtractedWelshpoolMay 16, 2023

Holding Time

	1000000	C !	Eurofins ARL	. Pty Ltd	Eurofins Environment Te	sting /	Austral	lia Pty	Ltd							Eurofins Environm	ent Testing NZ Ltd
web: w email: I	ww.eurofins.com.au	Com	Perth 46-48 Banksia R Welshpool WA 6106 Tel: +61 8 6253 NATA# 2377 Sit	toad 4444 e# 2370	Melbourne Geel 6 Monterey Road 19/8 Dandenong South Grov VIC 3175 VIC 3175 VIC 112: +61 3 8564 5000 Tel: +61 3 8564 5000 NATA# 1261 Site# 1254 NAT.	ong Lewalar edale 3216 +61 3 85 A# 1261	564 5000 Site# 2	5403 N	ydney 79 Mago irraweer SW 214 el: +61 2 ATA# 1:)war Ro n .5 2 9900 { 261 Site	ad 3400 # 18217	Canb Unit 1 Mitche ACT 2 Tel: + 7 NATA	erra ,2 Dacre ell 2911 61 2 61 # 1261	Brisbane e Street 1/21 Smallwood Place Murarrie QLD 4172 13 8091 Tel: +61 7 3902 4600 Site# 25466 NATA# 1261 Site# 207	Newcastle 1/2 Frost Drive Mayfield West NSW 2304 Tel: +61 2 4968 8448 NATA# 1261 '94 Site# 25079 & 25289	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 4551 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: +64 3 343 5201 IANZ# 1290
Co Ad Pro	mpany Name: dress: bject Name:	Galt Environ 50 Edward S Osborne Pa WA 6017 VICTORIA F	ment P/L Street rk PARK				Oi Re Pi Fa	rder N eport none: ax:	lo.: #:	9 C C	89739 8 627 8 928	9 2 020 5 844	00 14		Received: Due: Priority: Contact Name:	May 15, 2023 4:55 May 24, 2023 7 Day - ALL SRA/Results	PM
Pro	oject ID:	WAE230033	3											Eu	ofins Analytical Servi	ces Manager : And	Irew Harvey
		Sa	Imple Detail			BTEX and Naphthalene	Moisture Set	Eurofins Suite B7	Eurofins Suite B4	Asbestos in Soils (ASC NEPM 2013)	OCOP in Soil	OCOP in Water	Metals M8 Soil				
Pert	h Laboratory - N	NATA # 2377 Si	te # 2370			Х	х	х	х	x	х	Х	х				
Melb	ourne Laborato	ory - NATA # 12	261 Site # 12	54		Х		Х	X	L							
Exte	rnal Laboratory	1															
No	Sample ID	Sample Date	Sampling Time	Matri	ix LAB ID												
1	BH01/0.0	May 15, 2023		Soil	L23-My0037394		X		X	X	Х		Х				
2	BH02/2.0	May 15, 2023		Soil	L23-My0037395		X		X	X	Х		X				
3	BH03/1.5	May 15, 2023		Soil	L23-My0037396		X		X	X	X		X				
4	BH04/0.0	May 15, 2023		Soil	L23-My0037397		X		X	X	X		X				
5	BH05/1.5	May 15, 2023		Soil	L23-My0037398		X		X		X		X				
6	BH06/1.0	May 15, 2023		Sol	L23-My0037399		X		X		X		X				
7		May 15, 2023		Sol	L23-My0037400		X	~	X	<u> </u>	Х	Y	X				
8	003	May 15, 2023		vvater	L23-My0037401			X		<u> </u>		Х					
Test	Counts	Tway 15, 2023	I	vvater	LZ3-WY0037402	1	7	1	7	7	7	1	7				
						-				<u> </u>				1			

Internal Quality Control Review and Glossary General

- 1. 2. 3.
- QC data may be available on request. All soil results are reported on a dry basis, unless otherwise stated. Samples were analysed on an 'as received' basis. Information identified on this report with the colour **blue** indicates data provided by customer that may have an impact on the results. This report replaces any interim results previously issued. 4. 5.

Holding Times Please refer to the most recent version of the 'Sample Preservation and Container Guide' for holding times (QS3001).

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Whits % w/w: F/fld F/mL g, kg g/kg L, mL L, mL L/min min	Percentage weight-for-weight basis, e.g. of asbestos in asbestos-containing finds in soil samples (% w/w) Airborne fibre filter loading as Fibres (N) per Fields counted (n) Airborne fibre reported concentration as Fibres per millilitre of air drawn over the sampler membrane (C) Mass, e.g. of whole sample (M) or asbestos-containing find within the sample (m) Concentration in grams per kilogram Volume, e.g. of air as measured in AFM (V = r x t) Airborne fibre sampling Flowrate as litres per minute of air drawn over the sampler membrane (r) Time (t), e.g. of air sample collection period
Calculations Airborne Fibre Concentration:	$C = \binom{A}{a} \times \binom{N}{n} \times \binom{1}{r} \times \binom{1}{r} = K \times \binom{N}{n} \times \binom{1}{v}$
Asbestos Content (as asbestos):	$\% w/w = \frac{(m \times P_A)}{M}$
Weighted Average (of asbestos):	$\mathscr{H}_{WA} = \sum \frac{(m \times P_A)_X}{x}$
Terms %asbestos	Estimated percentage of asbestos in a given matrix. May be derived from knowledge or experience of the material, informed by HSG264 Appendix 2, else assumed to be 15% in accordance with WA DOH Appendix 2 (P _A).
ACM	Asbestos Containing Materials. Asbestos contained within a non-asbestos matrix, typically presented in bonded (non-friable) condition. For the purposes of the NEPM and WA DOH, ACM corresponds to material larger than 7 mm x 7 mm.
AF	Asbestos Fines. Asbestos contamination within a soil sample, as defined by WA DOH. Includes loose fibre bundles and small pieces of friable and non-friable material such as asbestos cement fragments mixed with soil. Considered under the NEPM as equivalent to "non-bonded / friable".
AFM	Airborne Fibre Monitoring, e.g. by the MFM.
Amosite	Amosite Asbestos Detected. Amosite may also refer to Fibrous Grunerite or Brown Asbestos. Identified in accordance with AS 4964-2004.
AS	Australian Standard.
Asbestos Content (as asbestos)	Total % w/w asbestos content in asbestos-containing finds in a soil sample (% w/w).
Chrysotile	Chrysotile Asbestos Detected. Chrysotile may also refer to Fibrous Serpentine or White Asbestos. Identified in accordance with AS 4964-2004.
COC	Chain of Custody.
Crocidolite	Crocidolite Asbestos Detected. Crocidolite may also refer to Fibrous Riebeckite or Blue Asbestos. Identified in accordance with AS 4964-2004.
Dry	Sample is dried by heating prior to analysis.
DS	Dispersion Staining. Technique required for Unequivocal Identification of asbestos fibres by PLM.
FA	Fibrous Asbestos. Asbestos containing material that is wholly or in part friable, including materials with higher asbestos content with a propensity to become friable with handling, and any material that was previously non-friable and in a severely degraded condition. For the purposes of the NEPM and WA DOH, FA generally corresponds to material larger than 7 mm x 7 mm, although FA may be more difficult to visibly distinguish and may be assessed as AF.
Fibre Count	Total of all fibres (whether asbestos or not) meeting the counting criteria set out in the NOHSC:3003
Fibre ID	Fibre Identification. Unequivocal identification of asbestos fibres according to AS 4964-2004. Includes Chrysotile, Amosite (Grunerite) or Crocidolite asbestos.
Friable	Asbestos-containing materials of any size that may be broken or crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is outside of the laboratory's remit to assess degree of friability.
HSG248	UK HSE HSG248, Asbestos: The Analysts Guide, 2nd Edition (2021).
HSG264	UK HSE HSG264, Asbestos: The Survey Guide (2012).
ISO (also ISO/IEC)	International Organization for Standardization / International Electrotechnical Commission.
K Factor	Microscope constant (K) as derived from the effective filter area of the given AFM membrane used for collecting the sample (A) and the projected eyepiece graticule area of the specific microscope used for the analysis (a).
LOR	Limit of Reporting.
MFM (also NOHSC:3003)	Membrane Filter Method. As described by the Australian Government National Occupational Health and Safety Commission, Guidance Note on the Membrane Filter Method for Estimating Airborne Asbestos Fibres, 2nd Edition [NOHSC:3003(2005)].
NEPM (also ASC NEPM)	National Environment Protection (Assessment of Site Contamination) Measure, (2013, as amended).
Organic	Organic Fibres Detected. Organic may refer to Natural or Man-Made Polymeric Fibres. Identified in accordance with AS 4964-2004.
PCM	Phase Contrast Microscopy. As used for Fibre Counting according to the MFM.
PLM	Polarised Light Microscopy. As used for Fibre Identification and Trace Analysis according to AS 4964-2004.
Sampling	Unless otherwise stated Eurofins are not responsible for sampling equipment or the sampling process.
SMF	Synthetic Mineral Fibre Detected. SMF may also refer to Man Made Vitreous Fibres. Identified in accordance with AS 4964-2004.
SRA	Sample Receipt Advice.
Trace Analysis	Analytical procedure used to detect the presence of respirable fibres (particularly asbestos) in a given sample matrix.
UK HSE HSG	United Kingdom, Health and Safety Executive, Health and Safety Guidance, publication.
UMF	Unidentified Mineral Fibre Detected. Fibrous minerals that are detected but have not been unequivocally identified by PLM with DS according the AS 4964-2004 May include (but not limited to) Actinolite, Anthophyllite or Tremolite asbestos.
WA DOH	Reference document for the NEPM. Government of Western Australia, Guidelines for the Assessment, Remediation and Management of Asbestos- Contaminated Sites in Western Australia (updated 2021), including Appendix Four: Laboratory analysis
Weighted Average	Combined average % w/w asbestos content of all asbestos-containing finds in the given aliquot or total soil sample (%wA).

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Asbestos Counter/Identifier:

Gustav Myburgh

Senior Analyst-Asbestos

Authorised by:

Rhys Thomas

Senior Analyst-Asbestos

of Pg

Kim Rodgers General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Galt Environment P/L 50 Edward Street Osborne Park WA 6017

Attention:

- ALL SRA/Results

Report
Project name
Project ID

Received Date

989739-S VICTORIA PARK WAE230033 May 15, 2023

Client Sample ID			BH01/0.0	BH02/2.0	BH03/1.5	BH04/0.0	
Sample Matrix			Soil	Soil	Soil	Soil	
Eurofins Sample No.			L23- My0037394	L23- My0037395	L23- My0037396	L23- My0037397	
Date Sampled			May 15, 2023	May 15, 2023	May 15, 2023	May 15, 2023	
Test/Reference	LOR	Unit					
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20	
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20	
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50	
TRH C29-C36	50	mg/kg	< 50	< 50	66	< 50	
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	66	< 50	
BTEX							
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2	
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3	
BTEX							
4-Bromofluorobenzene (surr.)	1	%	98	90	85	95	
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions						
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50	
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20	
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20	
Polycyclic Aromatic Hydrocarbons							
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6	
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2	
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Fluoranthene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5	

NATA Accredited Accreditation Number 2377 Site Number 2370

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Client Sample ID			BH01/0.0	BH02/2.0	BH03/1.5	BH04/0.0
Sample Matrix			Soil	Soil	Soil	Soil
Furofins Sample No			L23- My0037394	L23- Mv0037395	L23- Mv0037396	L23- Mv0037397
Date Sampled			May 15, 2023	May 15, 2023	May 15, 2023	May 15, 2023
		1.1	May 13, 2023	May 13, 2023	May 13, 2023	May 13, 2023
Pelvevelia Aremetia Hydrocarbona	LUR	Unit				
	0.5		.0.5	.05	.05	.05
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Nephthelene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phononthrono	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	//////////////////////////////////////	71	80	91	73
p-Terphenyl-d14 (surr.)	1	%	60	76	93	69
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions	70	00	10		00
	50	ma/ka	< 50	< 50	< 50	< 50
TRH >C16-C34	100	ma/ka	< 100	< 100	< 100	< 100
TRH >C34-C40	100	ma/ka	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	ma/ka	< 100	< 100	< 100	< 100
OCOP in Soil						
Aldrin	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
alpha-BHC (HCH)	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
beta-BHC (HCH)	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
delta-BHC (HCH)	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Bifenthrin	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Bromophos Ethyl	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Chlordane	0.01	mg/kg	< 0.01	< 0.01	0.03	0.02
Chlorpyrifos	0.02	mg/kg	< 0.02	< 0.02	< 0.02	< 0.02
Dieldrin	0.01	mg/kg	< 0.01	< 0.01	0.12	0.03
p.p-DDD	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
p.p-DDE	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
p.p-DDT	0.01	mg/kg	< 0.01	< 0.01	0.01	< 0.01
o.p-DDT	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endosulfan I	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endosulfan II	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endosulfan Sulfate	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Heptachior	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
	0.01	mg/kg	< 0.01	< 0.01	< 0.01	0.01
	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Methoxychlor	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.2
	0.2	ma/ka	< 0.01	< 0.01	< 0.01	< 0.01
Diazinon	0.01	ma/ka	< 0.2	< 0.2	< 0.2	< 0.2
Fthion	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
Fenitrothion	0.1	ma/ka	< 0.1	< 0.1	< 0.1	< 0.1
Malathion	0.1	ma/ka	< 0.1	< 0.1	< 0.1	< 0.1
Trifluralin	0.2	ma/ka	< 0.2	< 0.2	< 0.2	< 0.2
Arsenic	5	mg/kg	< 5	< 5	< 5	< 5
Cadmium	0.1	mg/kg	< 0.1	< 0.1	< 0.1	0.1
Chromium	1	mg/kg	3.4	3.2	12	5.7
Copper	1	mg/kg	3.7	< 1	6.8	4.1
Lead	1	mg/kg	17	5.4	51	40
Mercury	0.02	mg/kg	0.03	< 0.02	0.04	< 0.02

Client Sample ID Sample Matrix Eurofins Sample No.			BH01/0.0 Soil L23- My0037394	BH02/2.0 Soil L23- My0037395	BH03/1.5 Soil L23- My0037396	BH04/0.0 Soil L23- My0037397
Date Sampled			May 15, 2023	May 15, 2023	May 15, 2023	May 15, 2023
Test/Reference	LOR	Unit				
Nickel	1	mg/kg	< 1	< 1	1.5	< 1
Zinc	1	mg/kg	55	18	66	48
Sample Properties						
% Moisture	1	%	3.3	5.0	5.0	6.1

Client Sample ID			BH05/1.5	BH06/1.0	QC01
Sample Matrix			Soil	Soil	Soil
Eurofins Sample No.			L23- My0037398	L23- My0037399	L23- My0037400
Date Sampled			May 15, 2023	May 15, 2023	May 15, 2023
Test/Reference	LOR	Unit			
Total Recoverable Hydrocarbons - 1999 NEPM Fract	tions				
TRH C6-C9	20	mg/kg	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50
BTEX					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3
BTEX					
4-Bromofluorobenzene (surr.)	1	%	97	87	93
Total Recoverable Hydrocarbons - 2013 NEPM Fract	tions				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20
Polycyclic Aromatic Hydrocarbons					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5

Client Sample ID			BH05/1.5	BH06/1.0	QC01
Sample Matrix			Soil	Soil	Soil
Eurofins Sample No.			L23- My0037398	L23- My0037399	L23- My0037400
Date Sampled			May 15, 2023	May 15, 2023	May 15, 2023
Test/Reference	LOR	Unit			
Polycyclic Aromatic Hydrocarbons					
Indeno(1,2,3-cd)pyrene	0.5	ma/ka	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	ma/ka	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	81	84	59
p-Terphenyl-d14 (surr.)	1	%	82	89	63
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions				
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100
OCOP in Soil					
Aldrin	0.01	mg/kg	< 0.01	< 0.01	< 0.01
alpha-BHC (HCH)	0.01	mg/kg	< 0.01	< 0.01	< 0.01
beta-BHC (HCH)	0.01	mg/kg	< 0.01	< 0.01	< 0.01
delta-BHC (HCH)	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Bifenthrin	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Bromophos Ethyl	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Chlordane	0.01	mg/kg	0.01	0.02	< 0.01
Chlorpyrifos	0.02	mg/kg	< 0.02	< 0.02	< 0.02
Dieldrin	0.01	mg/kg	0.39	0.16	< 0.01
	0.01	mg/kg	< 0.01	< 0.01	< 0.01
	0.01	mg/kg	0.02	0.07	< 0.01
	0.01	mg/kg	< 0.01	0.02	< 0.01
	0.01	mg/kg	< 0.01	< 0.01	< 0.01
	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Endosulfan Sulfate	0.01	ma/ka	< 0.01	< 0.01	< 0.01
Endrin	0.01	ma/ka	< 0.01	< 0.01	< 0.01
Heptachlor	0.01	ma/ka	< 0.01	< 0.01	< 0.01
Heptachlor Epoxide	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Hexachlorobenzene (HCB)	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Lindane	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Oxychlordane	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Diazinon	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Ethion	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Fenitrothion	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Malathion	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Trifluralin	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Arsenic	5	mg/kg	< 5	< 5	< 5
Cadmium	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Chromium	1	mg/kg	1.8	1.3	3.7
Copper	1	mg/kg	4.4	1.9	< 1
Lead	1	mg/kg	26	13	6.1
	0.02	mg/kg	< 0.02	< 0.02	< 0.02
	1	mg/kg	< 1	< 1	< 1
	1	mg/kg	170	91	18

	<i>n</i> .	personal distances in the second seco	
	<i>n</i> .	-	
		Inc.	
- 1		1.3.	Barrow

Client Sample ID			BH05/1.5	BH06/1.0	QC01
Sample Matrix			Soil	Soil	Soil
Eurofins Sample No.			L23- My0037398	L23- My0037399	L23- My0037400
Date Sampled			May 15, 2023	May 15, 2023	May 15, 2023
Test/Reference	LOR	Unit			
Sample Properties					
% Moisture	1	%	8.4	16	4.6

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

ARL

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Welshpool	May 19, 2023	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Welshpool	May 19, 2023	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Welshpool	May 19, 2023	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Welshpool	May 19, 2023	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Welshpool	May 19, 2023	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
OCOP in Soil	Welshpool	May 19, 2023	14 Days
- Method: ARL003 - OCOP and PCB in Soil			
Arsenic	Welshpool	May 19, 2023	180 Days
- Method: ARL401/403 - Metals in Soil and Sediment by ICPOES/MS			
Cadmium	Welshpool	May 19, 2023	180 Days
- Method: ARL401/403 - Metals in Soil and Sediment by ICPOES/MS			
Chromium	Welshpool	May 19, 2023	180 Days
- Method: ARL401/403 - Metals in Soil and Sediment by ICPOES/MS			
Copper	Welshpool	May 19, 2023	180 Days
- Method: ARL401/403 - Metals in Soil and Sediment by ICPOES/MS			
Lead	Welshpool	May 19, 2023	180 Days
- Method: ARL401/403 - Metals in Soil and Sediment by ICPOES/MS			
Mercury	Welshpool	May 19, 2023	28 Days
- Method: ARL No. 406 - Mercury by Cold Vapour Atomic Absorption Spectrophotometry			
Nickel	Welshpool	May 19, 2023	180 Days
- Method: ARL401/403 - Metals in Soil and Sediment by ICPOES/MS			
Zinc	Welshpool	May 19, 2023	180 Days
- Method: ARL401/403 - Metals in Soil and Sediment by ICPOES/MS			
% Moisture	Welshpool	May 16, 2023	14 Days
- Method: ARL135 Moisture in Solids			

	1000000000	C'	Eurofins ARL	. Pty Ltd E	Eurofins Environment To	esting A	Austra	lia Pty	Ltd							Eurofins Environm	ent Testing NZ Ltd
web: we email: E	ww.eurofins.com.au	rins .com	Perth 46-48 Banksia R Welshpool WA 6106 Tel: +61 8 6253 NATA# 2377 Site	oad 6 4444 7 e# 2370 N	Velbourne Gee S Monterey Road 19/6 Dandenong South Gro VIC 3175 VIC Fel: +61 3 8564 5000 Tel: NATA# 1261 Site# 1254 NAT	long Lewalar vedale 3216 +61 3 85 A# 1261	n Street 564 5000 Site# 2	5403 N	/dney 79 Mago irraweer SW 214 el: +61 2 ATA# 12	owar Ro n 5 2 9900 8 261 Site	ad 3400 # 1821	Canb Unit 1 Mitche ACT 2 Tel: + 7 NATA	erra ,2 Dacre ell 2911 61 2 611 # 1261 \$	Brisbane 9 Street 1/21 Smallwood Pla Murarrie QLD 4172 13 8091 Tel: +61 7 3902 460 Site# 25466 NATA# 1261 Site# 2	Newcastle ce 1/2 Frost Drive Mayfield West NSW 2304 Tel: +61 2 4968 8448 0 NATA# 1261 00794 Site# 25079 & 25289	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290
Cor Ade Pro	mpany Name: dress: viect Name:	Galt Environ 50 Edward S Osborne Par WA 6017 VICTORIA F	ment P/L Street rk PARK				O Re Pl Fa	rder N eport none: ax:	lo.: #:	9 0 0)89739)8 627)8 928	9 2 020 5 844	00 14		Received: Due: Priority: Contact Name:	May 15, 2023 4:55 May 24, 2023 7 Day - ALL SRA/Results	РМ
Pro	ject ID:	WAE230033	5											E	urofins Analytical Serv	ices Manager : And	rew Harvey
		Sa	mple Detail			BTEX and Naphthalene	Moisture Set	Eurofins Suite B7	Eurofins Suite B4	Asbestos in Soils (ASC NEPM 2013)	OCOP in Soil	OCOP in Water	Metals M8 Soil				
Pert	n Laboratory - N	IATA # 2377 Si	te # 2370			Х	Х	Х	Х	Х	Х	Х	х				
Melb	ourne Laborato	ory - NATA # 12	61 Site # 12	54		Х		Х	Х								
Exte	rnal Laboratory	,															
No	Sample ID	Sample Date	Sampling Time	Matrix	k LAB ID												
1	BH01/0.0	May 15, 2023		Soil	L23-My0037394		X		Х	Х	Х		Х				
2	BH02/2.0	May 15, 2023		Soil	L23-My0037395		X		X	X	Х		X				
3	BH03/1.5	May 15, 2023		Soil	L23-My0037396		X		X	X	Х		X				
4	BH04/0.0	May 15, 2023		Soil	L23-My0037397	+	X		X	X	X		X				
5	BH05/1.5	May 15, 2023		Soil	L23-My0037398	+	X		X	X	X		X				
6	BH06/1.0	May 15, 2023		Soil	L23-My0037399		X		X	X	X		X				
7		May 15, 2023		Soil	L23-My0037400	+	X		X	X	X	X	X				
8	QC03	May 15, 2023		vvater	L23-My0037401			X				Х					
9 Test	Counts	iviay 15, 2023		vvater	[L23-MY0037402	1	7	1	7	7	7	1	7				

Environment Testing

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	μg/L: micrograms per litre
ppm: parts per million	ppb: parts per billion	%: Percentage
org/100 mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres
CFU: Colony forming unit		

Terms

АРНА	American Public Health Association
сос	Chain of Custody
CP	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
ТВТО	Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank			1	T		
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	1					
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Method Blank		1	I	I		
BTEX	1					
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3		0.3	Pass	
Method Blank		1	1	1		
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	1					
Naphthalene	mg/kg	< 0.5		0.5	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
Method Blank		1	1	1		
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene	mg/kg	< 0.5		0.5	Pass	
Method Blank		I	1 1	1		
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	1					
TRH >C10-C16	mg/kg	< 50		50	Pass	
TRH >C16-C34	mg/kg	< 100		100	Pass	
TRH >C34-C40	mg/kg	< 100		100	Pass	
Method Blank		I	1 1	1		
OCOP in Soil	i					
Aldrin	mg/kg	0.01		0.01	Pass	
alpha-BHC (HCH)	mg/kg	< 0.01		0.01	Pass	
beta-BHC (HCH)	mg/kg	< 0.01		0.01	Pass	
delta-BHC (HCH)	mg/kg	< 0.01		0.01	Pass	
Bifenthrin	mg/kg	< 0.2		0.2	Pass	
Bromophos Ethyl	mg/kg	< 0.05		0.05	Pass	
Chlordane	mg/kg	< 0.01		0.01	Pass	
Chlorpyrifos	mg/kg	< 0.02		0.02	Pass	
Dieldrin	mg/kg	< 0.01		0.01	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
p.p-DDD	mg/kg	< 0.01	0.01	Pass	
p.p-DDE	mg/kg	< 0.01	0.01	Pass	
p.p-DDT	mg/kg	< 0.01	0.01	Pass	
o.p-DDT	mg/kg	< 0.01	0.01	Pass	
Endosulfan I	mg/kg	< 0.01	0.01	Pass	
Endosulfan II	mg/kg	< 0.01	0.01	Pass	
Endosulfan Sulfate	mg/kg	< 0.01	0.01	Pass	
Endrin	mg/kg	< 0.01	0.01	Pass	
Heptachlor	mg/kg	< 0.01	0.01	Pass	
Heptachlor Epoxide	mg/kg	< 0.01	0.01	Pass	
Hexachlorobenzene (HCB)	mg/kg	< 0.01	0.01	Pass	
Lindane	mg/kg	< 0.01	0.01	Pass	
Methoxychlor	mg/kg	< 0.2	0.2	Pass	
Oxychlordane	mg/kg	< 0.01	0.01	Pass	
Diazinon	mg/kg	< 0.2	0.2	Pass	
Ethion	mg/kg	< 0.05	0.05	Pass	
Fenitrothion	mg/kg	< 0.1	0.1	Pass	
Malathion	mg/kg	< 0.1	0.1	Pass	
Trifluralin	mg/kg	< 0.2	0.2	Pass	
Method Blank			 •		
Arsenic	mg/kg	< 5	5	Pass	
Cadmium	mg/kg	< 0.1	0.1	Pass	
Chromium	mg/kg	< 1	1	Pass	
Copper	mg/kg	< 1	1	Pass	
Lead	mg/kg	< 1	1	Pass	
Mercury	mg/kg	< 0.02	0.02	Pass	
Nickel	mg/kg	< 1	1	Pass	
Zinc	mg/kg	< 1	1	Pass	
LCS - % Recovery			 •		
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	104	70-130	Pass	
TRH C10-C14	%	105	70-130	Pass	
LCS - % Recovery					
BTEX					
Benzene	%	104	70-130	Pass	
Toluene	%	100	70-130	Pass	
Ethylbenzene	%	99	70-130	Pass	
m&p-Xylenes	%	105	70-130	Pass	
o-Xylene	%	100	70-130	Pass	
Xylenes - Total*	%	104	70-130	Pass	
LCS - % Recovery			_		
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	%	106	70-130	Pass	
TRH C6-C10	%	84	70-130	Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	99	70-130	Pass	
Acenaphthylene	%	84	70-130	Pass	
Anthracene	%	95	70-130	Pass	
Benz(a)anthracene	%	83	70-130	Pass	
Benzo(a)pyrene	%	87	70-130	Pass	
Benzo(b&j)fluoranthene	%	85	70-130	Pass	
Benzo(g.h.i)perylene	%	103	70-130	Pass	
Benzo(k)fluoranthene	%	98	70-130	Pass	

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Chrysene	%	102		70-130	Pass	
Dibenz(a.h)anthracene	%	95		70-130	Pass	
Fluoranthene	%	87		70-130	Pass	
Fluorene	%	96		70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	97		70-130	Pass	
Naphthalene	%	88		70-130	Pass	
Phenanthrene	%	91		70-130	Pass	
Pyrene	%	83		70-130	Pass	
LCS - % Recovery		1				
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
TRH >C10-C16	%	99		70-130	Pass	
LCS - % Recovery		1	I I			
OCOP in Soil	1					
Aldrin	%	119		60-120	Pass	
Dieldrin	%	109		60-120	Pass	
p.p-DDT	%	86		60-120	Pass	
Endrin	%	70		60-120	Pass	
Heptachlor	%	113		60-120	Pass	
Lindane	%	120		60-120	Pass	
LCS - % Recovery		1	1	[]		
Arsenic	%	81		80-120	Pass	
Cadmium	%	94		80-120	Pass	
Chromium	%	100		80-120	Pass	
Copper	%	80		80-120	Pass	
Lead	%	120		80-120	Pass	
Mercury	%	88		60-120	Pass	
Nickel	%	88		80-120	Pass	
CRM - % Recovery		1				
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	%	92		70-130	Pass	
CRM - % Recovery		1				
BTEX					_	
Benzene	%	97		70-130	Pass	
	%	98		70-130	Pass	
Ethylbenzene	%	89		70-130	Pass	
m&p-Xylenes	%	100		70-130	Pass	
o-Xylene	%	98		70-130	Pass	
Xylenes - Total*	%	99		70-130	Pass	
CRM - % Recovery		1				
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	0/	100		70.400	Daaa	
	%	108		70-130	Pass	
	%	90		70-130	Pass	
CRW - % Recovery		1				
	0/	107		90.120	Dooo	
Acenaphthylana	0/	02		80.120	Pass	
	/0 0/_	07		80-120	i ass Pace	
Renz(a)anthracene	/0 0/_	80		70-120	i ass Pace	
Benzo(a)nyrene	/0 0/_	80		80-120	Pass	
Benzo(b&i)fluoranthene	/u 0/2	<u>an</u>		80-120	Pace	
Benzo(a h i)nervlene	%	02		80-120	Pass	
Benzo(k)fluoranthene	/u %	111		80-120	Pase	
Chrysene	%	117		80-120	Page	
Dibenz(a h)anthracene	%	105		80-120	Pass	
	70	1 100	I I	00120	1 400	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Fluoranthene			%	85		80-120	Pass	
Fluorene			%	102		80-120	Pass	
Indeno(1.2.3-cd)pyrene			%	91		80-120	Pass	
Naphthalene			%	106		70-130	Pass	
Phenanthrene			%	99		80-120	Pass	
Pyrene			%	83		80-120	Pass	
CRM - % Recovery						-	-	
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions						
TRH >C10-C16			%	96		70-130	Pass	
TRH >C34-C40			%	101		70-130	Pass	
CRM - % Recovery		T		T	1	1		
Arsenic			%	93		80-120	Pass	
Cadmium			%	106		80-120	Pass	
Chromium			%	104		80-120	Pass	
Copper			%	98		80-120	Pass	
Lead			%	116		80-120	Pass	
Mercury			%	107		60-120	Pass	
Nickel			%	102		80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				1	1	Ĭ		
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1				
TRH C6-C9	L23-My0037395	CP	%	107		70-130	Pass	
TRH C10-C14	L23-My0037395	CP	%	129		70-130	Pass	
Spike - % Recovery				1		L		
BTEX		· · · · ·		Result 1				
Benzene	L23-My0037395	CP	%	101		70-130	Pass	
Toluene	L23-My0037395	CP	%	97		70-130	Pass	
Ethylbenzene	L23-My0037395	CP	%	101		70-130	Pass	
m&p-Xylenes	L23-My0037395	CP	%	106		70-130	Pass	
o-Xylene	L23-My0037395	CP	%	107		70-130	Pass	
Xylenes - Total*	L23-My0037395	CP	%	106		70-130	Pass	
Spike - % Recovery		-		I		1		
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1			_	
Naphthalene	L23-My0037395	CP	%	106		70-130	Pass	
TRH C6-C10	L23-My0037395	CP	%	96		70-130	Pass	
Spike - % Recovery				D 14				
Polycyclic Aromatic Hydrocarbons		0.0	0/	Result 1		70.400		
Acenaphthene	L23-My0037395	CP	%	107		70-130	Pass	
Acenaphthylene	L23-My0037395		%	101		70-130	Pass	
Anthracene	L23-My0037395		<u>%</u>	103		70-130	Pass	
Benze(a)antinacene	L23-IVI90037395		% 0/	93		70-130	Pass	<u> </u>
Benzo(a)pyrene	L23-IMIY0037395		% 0/	94		70-130	Pass	
Benzo(d bi)por (ono	L23-IMIY0037395			90		70-130	Pass	
Benzo(k)fluoranthana	L23-IVIYUU3/395		-70 0/	102		70 120	Page	
Chrysene	L23-11110037305		/0 0/_	106		70-130	Pase	
Dibenz(a h)anthracene	23-Mv/0037395	CP	%	106		70-130	Page	
Fluoranthene	1 23-My0037395	CP	%	95		70-130	Pass	
Fluorene	1 23-Mv0037395	CP	%	106		70-130	Pass	
Indeno(1,2,3-cd)pyrepe	L 23-My0037395	CP	%	104		70-130	Pass	
Naphthalene	L23-Mv0037395	CP	%	104		70-130	Pass	
Phenanthrene	L23-Mv0037395	CP	%	104		70-130	Pass	
Pyrene	L23-My0037395	CP	%	95		70-130	Pass	
Spike - % Recovery	,	-			· · · · ·			

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Pass C Limits Limits		Qualifying Code
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1					
TRH >C10-C16	L23-My0037395	CP	%	123			70-130	Pass	
Spike - % Recovery									
OCOP in Soil				Result 1					
Aldrin	L23-My0037395	CP	%	114			60-120	Pass	
Dieldrin	L23-My0037395	CP	%	98			60-120	Pass	
p.p-DDT	L23-My0037395	CP	%	112			60-120	Pass	
Endrin	L23-My0037395	CP	%	88			60-120	Pass	
Heptachlor	L23-My0037395	CP	%	111			60-120	Pass	
Lindane	L23-My0037395	CP	%	108			60-120	Pass	
Spike - % Recovery									
				Result 1					
Arsenic	L23-My0037395	CP	%	80			80-120	Pass	
Copper	L23-My0037395	CP	%	88			80-120	Pass	
Lead	L23-My0037395	CP	%	102			80-120	Pass	
Nickel	L23-My0037395	CP	%	86			80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	L23-My0037394	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	L23-My0013466	NCP	mg/kg	470	570	19	30%	Pass	
TRH C15-C28	L23-My0013466	NCP	mg/kg	930	1100	16	30%	Pass	
TRH C29-C36	L23-My0013466	NCP	mg/kg	< 500	< 500	<1	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	L23-My0037394	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	L23-My0037394	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	L23-My0037394	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	L23-My0037394	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	L23-My0037394	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	L23-My0037394	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	L23-My0037394	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	L23-My0037394	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbons	5			Result 1	Result 2	RPD			
Acenaphthene	L23-My0047854	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	L23-My0047854	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	L23-My0047854	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	L23-My0047854	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	L23-My0047854	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	L23-My0047854	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	L23-My0047854	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	L23-My0047854	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	L23-My0047854	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	L23-My0047854	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	L23-My0047854	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	L23-My0047854	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	L23-My0047854	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	L23-My0047854	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	L23-My0047854	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	L23-My0047854	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Duplicate											
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD					
TRH >C10-C16	L23-My0013466	NCP	mg/kg	820	970	17	30%	Pass			
TRH >C16-C34	L23-My0013466	NCP	mg/kg	< 1000	< 1000	<1	30%	Pass			
TRH >C34-C40	L23-My0013466	NCP	mg/kg	< 1000	< 1000	<1	30%	Pass			
Duplicate											
OCOP in Soil				Result 1	Result 2	RPD					
Aldrin	L23-My0037394	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass			
alpha-BHC (HCH)	L23-My0037394	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass			
beta-BHC (HCH)	L23-My0037394	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass			
delta-BHC (HCH)	L23-My0037394	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass			
Bifenthrin	L23-My0037394	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass			
Bromophos Ethyl	L23-My0037394	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass			
Chlordane	L23-My0037394	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass			
Chlorpyrifos	L23-My0037394	CP	mg/kg	< 0.02	< 0.02	<1	30%	Pass			
Dieldrin	L23-My0037394	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass			
p.p-DDD	L23-My0037394	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass			
p.p-DDE	L23-My0037394	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass			
p.p-DDT	L23-My0037394	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass			
o.p-DDT	L23-My0037394	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass			
Endosulfan I	L23-My0037394	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass			
Endosulfan II	Endosulfan II L23-My0037394 CP mg/l		mg/kg	< 0.01 < 0.01 <1		30%	Pass				
Endosulfan Sulfate	Endosulfan Sulfate L23-My0037394 CP mg/k		mg/kg	< 0.01	< 0.01	<1	30%	Pass			
Endrin	ndrin L23-My0037394 CP mg/l		mg/kg	< 0.01	< 0.01 < 0.01 <1 3		30%	Pass			
Heptachlor	L23-My0037394	CP	mg/kg	< 0.01	1 < 0.01 <1		30%	Pass			
Heptachlor Epoxide	L23-My0037394	CP	mg/kg	< 0.01	< 0.01 <1		30%	Pass			
Hexachlorobenzene (HCB)	L23-My0037394	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass			
Lindane	L23-My0037394	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass			
Methoxychlor	L23-My0037394	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass			
Oxychlordane	L23-My0037394	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass			
Diazinon	L23-My0037394	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass			
Ethion	L23-My0037394	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass			
Fenitrothion	L23-My0037394	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass			
Malathion	L23-My0037394	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass			
Trifluralin	L23-My0037394	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass			
Duplicate				1							
				Result 1	Result 2	RPD					
Arsenic	L23-My0037394	CP	mg/kg	< 5	< 5	<1	20%	Pass			
Cadmium	L23-My0037394	CP	mg/kg	< 0.1	< 0.1	<1	20%	Pass			
Chromium	L23-My0037394	CP	mg/kg	3.4	5.3	45	20%	Fail	Q15		
Copper	L23-My0037394	CP	mg/kg	3.7	2.5	37	20%	Fail	Q15		
Lead	L23-My0037394	CP	mg/kg	17	25	36	20%	Fail	Q15		
Nickel	L23-My0037394	CP	mg/kg	< 1	< 1	<1	20%	Pass			
Zinc	L23-My0037394	CP	mg/kg	55	45	20	20%	Pass			
Duplicate				1							
Sample Properties	1			Result 1	Result 2	RPD					
% Moisture	L23-My0037394	CP	%	3.3	3.5	4.4	30%	Pass			

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

N07 Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

Andrew Harvey	Analytical Services Manager
Douglas Todd	Senior Analyst-Sample Properties
John Horwood	Senior Analyst-Volatile
Patrick Patfield	Senior Analyst-Organic
Paul Nottle	Senior Analyst-Organic
Rhys Thomas	Senior Analyst-Asbestos
Sean Sangster	Senior Analyst-Metal

of Kg

Kim Rodgers General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Galt Environment P/L 50 Edward Street Osborne Park WA 6017

Attention:

- ALL SRA/Results

Report
Project name
Project ID
Received Date

989739-W VICTORIA PARK WAE230033 May 15, 2023

Client Sample ID			0003	0004
Sample Matrix			Water	Water
			1 23-	1 23-
Eurofins Sample No.			My0037401	My0037402
Date Sampled			May 15, 2023	May 15, 2023
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions			
TRH C6-C9	0.02	mg/L	< 0.02	-
TRH C10-C14	0.02	mg/L	< 0.02	-
TRH C15-C28	0.04	mg/L	< 0.04	-
TRH C29-C36	0.04	mg/L	< 0.04	-
TRH C10-C36 (Total)	0.04	mg/L	< 0.04	-
BTEX				
Benzene	0.001	mg/L	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002
o-Xylene	0.001	mg/L	< 0.001	< 0.001
Xylenes - Total*	0.003	mg/L	< 0.003	< 0.003
BTEX				
4-Bromofluorobenzene (surr.)	1	%	100	90
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions			
Naphthalene ^{N02}	0.001	mg/L	< 0.001	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.02	mg/L	< 0.02	-
TRH C6-C10	0.02	mg/L	< 0.02	-
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02	-
Polycyclic Aromatic Hydrocarbons				
Benzo(a)pyrene TEQ (lower bound) *	0.001	mg/L	< 0.001	-
Acenaphthene	0.001	mg/L	< 0.001	-
Acenaphthylene	0.001	mg/L	< 0.001	-
Anthracene	0.001	mg/L	< 0.001	-
Benz(a)anthracene	0.001	mg/L	< 0.001	-
Benzo(a)pyrene	0.001	mg/L	< 0.001	-
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	-
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	-
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	-
Chrysene	0.001	mg/L	< 0.001	-
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	-
Fluoranthene	0.001	mg/L	< 0.001	-
Fluorene	0.001	mg/L	< 0.001	-
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	-

NATA Accredited Accreditation Number 2377 Site Number 2370

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Client Sample ID			QC03	QC04
Sample Matrix			Water	Water
			L23-	L23-
Eurofins Sample No.			My0037401	My0037402
Date Sampled			May 15, 2023	May 15, 2023
Test/Reference	LOR	Unit		
Polycyclic Aromatic Hydrocarbons	1			
Naphthalene	0.001	mg/L	< 0.001	-
Phenanthrene	0.001	mg/L	< 0.001	-
Pyrene	0.001	mg/L	< 0.001	-
Total PAH*	0.001	mg/L	< 0.001	-
2-Fluorobiphenyl (surr.)	1	%	87	-
p-Terphenyl-d14 (surr.)	1	%	95	-
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions			
TRH >C10-C16	0.02	mg/L	< 0.02	-
TRH >C16-C34	0.05	mg/L	< 0.05	-
TRH >C34-C40	0.05	mg/L	< 0.05	-
TRH >C10-C40 (total)*	0.05	mg/L	< 0.05	-
OCOP in Water				
Aldrin	0.001	ug/L	^{G02} < 0.005	-
alpha-BHC (HCH)	0.001	ug/L	^{G02} < 0.005	-
beta-BHC (HCH)	0.001	ug/L	^{G02} < 0.005	-
delta-BHC (HCH)	0.001	ug/L	^{G02} < 0.005	-
Bifenthrin	0.05	ug/L	^{G02} < 0.25	-
Bromophos Ethyl	0.005	ug/L	^{G02} < 0.025	-
Chlordane	0.002	ug/L	^{G02} < 0.01	-
Chlorothalonil	0.01	ug/L	^{G02} < 0.05	-
Chlorpyrifos	0.005	ug/L	^{G02} < 0.025	-
Diazinon	0.01	ug/L	^{G02} < 0.05	-
Dieldrin	0.001	ug/L	^{G02} < 0.005	-
Endosulfan I	0.001	ug/L	^{G02} < 0.005	-
Endosulfan II	0.001	ug/L	^{G02} < 0.005	-
Endosulfan Sulfate	0.001	ug/L	^{G02} < 0.005	-
Endrin	0.01	ug/L	^{G02} < 0.05	-
Ethion	0.01	ug/L	^{G02} < 0.05	-
Fenitrothion	0.01	ug/L	^{G02} < 0.05	-
Fipronil	0.02	ug/L	^{G02} < 0.1	-
Hexachlorobenzene (HCB)	0.001	ug/L	^{G02} < 0.005	-
Heptachlor Epoxide	0.001	ug/L	^{G02} < 0.005	-
Heptachlor	0.001	ug/L	^{G02} < 0.005	-
Lindane	0.001	ug/L	^{G02} < 0.005	-
Malathion	0.01	ug/L	^{G02} < 0.05	-
Methoxychlor	0.02	ug/L	^{G02} < 0.1	-
o.p-DDT	0.001	ug/L	^{G02} < 0.005	-
Oxychlordane	0.001	ug/L	^{G02} < 0.005	-
p.p-DDD	0.001	ug/L	^{G02} < 0.005	-
p.p-DDE	0.001	ug/L	^{G02} < 0.005	-
p.p-DDT	0.001	ug/L	^{G02} < 0.005	-
Parathion Ethyl	0.02	ug/L	^{G02} < 0.1	-
Parathion Methyl	0.02	ug/L	^{G02} < 0.1	-
Trifluralin	0.01	ug/L	^{G02} < 0.05	-
Vinclozolin	0.02	ug/L	^{G02} < 0.1	-

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			QC03 Water L23- My0037401 May 15, 2023	QC04 Water L23- My0037402 May 15, 2023
Test/Reference	LOR	Unit		
Heavy Metals				
Arsenic	0.001	mg/L	< 0.001	-
Cadmium	0.0001	mg/L	< 0.0001	-
Chromium	0.001	mg/L	< 0.001	-
Copper	0.001	mg/L	< 0.001	-
Lead	0.001	mg/L	< 0.001	-
Mercury	0.0001	mg/L	< 0.0001	-
Nickel	0.001	mg/L	< 0.001	-
Zinc	0.005	mg/L	< 0.005	-
Naphthalene ^{N02}	0.001	mg/L	-	< 0.001

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Welshpool	May 18, 2023	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Welshpool	May 18, 2023	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Welshpool	May 18, 2023	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Welshpool	May 18, 2023	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Welshpool	May 18, 2023	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
OCOP in Water	Welshpool	May 18, 2023	7 Days
- Method: ARL No. 002 - OCOP and PCB in Water			
Metals M8	Welshpool	May 18, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Naphthalene	Welshpool	May 18, 2023	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			

		C	Eurofins ARL	- Pty Ltd	Eurofins Environment	esting .	Austra	lia Pty	Ltd								Eurofins Environm	ent Testing NZ Ltd
Web: www.eurofins.com.au email: EnviroSales@eurofins.com		EUROTINS Peri 46-4 Wel WA : www.eurofins.com.au iil: EnviroSales@eurofins.com		20ad 4444 e# 2370	Abit. 30 003 063 063 063 064 Get Melbourne Get 6 Monterey Road 19 Dandenong South Gr VIC 3175 VII Tel: +61 3 8564 5000 Te NATA# 1261 Site# 1254 NA	elong /8 Lewala ovedale C 3216 I: +61 3 8 TA# 1261	n Street 564 500 I Site# 2	S 17 G N 0 T 5403 N	ydney 79 Mago irraweel SW 214 el: +61 2 ATA# 12	owar Ro n 5 2 9900 8 261 Site	ad 3400 # 1821	Canb Unit 1 Mitche ACT 2 Tel: + 7 NATA	erra ,2 Dacre ell 2911 61 2 611 \# 1261 \$	Brisbane 9 Street 1/21 Smallwoo Murarrie QLD 4172 13 8091 Tel: +61 7 390: Site# 25466 NATA# 1261 S	od Place 02 4600 Site# 207	Newcastle 1/2 Frost Drive Mayfield West NSW 2304 Tel: +61 2 4968 8448 NATA# 1261 94 Site# 25079 & 25289	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290
Co Ad	mpany Name: dress: oject Name:	Galt Environ 50 Edward S Osborne Pa WA 6017 VICTORIA F	ment P/L Street rk PARK				O Ri Pi Fa	rder N eport hone: ax:	lo.: #:	9 C C)89739)8 627)8 928	9 2 020 5 844)0 14			Received: Due: Priority: Contact Name:	May 15, 2023 4:55 May 24, 2023 7 Day - ALL SRA/Results	PM
Pro	oject ID:	WAE230033	3												Eur	ofins Analytical Servi	ces Manager : And	Irew Harvey
Sample Detail					BTEX and Naphthalene	Moisture Set	Eurofins Suite B7	Eurofins Suite B4	Asbestos in Soils (ASC NEPM 2013)	OCOP in Soil	OCOP in Water	Metals M8 Soil						
Pert	h Laboratory - N	NATA # 2377 Si	te # 2370			Х	X	х	х	х	х	Х	х					
Melb	ourne Laborato	ory - NATA # 12	261 Site # 12	54		X		Х	X									
Exte No	rnal Laboratory Sample ID	Sample Date	Sampling	Matri	x LAB ID													
1	BH01/0.0	May 15, 2023		Soil	L23-My003739	4	X		x	x	х		x					
2	BH02/2.0	May 15, 2023		Soil	L23-My003739	5	Х		х	Х	Х		Х					
3	BH03/1.5	May 15, 2023		Soil	L23-My003739	6	Х		х	Х	Х		Х					
4	BH04/0.0	May 15, 2023		Soil	L23-My003739	7	Х		Х	Х	Х		Х					
5	BH05/1.5	May 15, 2023		Soil	L23-My003739	3	Х		Х	Х	Х		Х					
6	BH06/1.0	May 15, 2023		Soil	L23-My003739	9	Х		х	Х	Х		Х					
7	QC01	May 15, 2023		Soil	L23-My003740	5	х		х	х	х		Х					
8	QC03	May 15, 2023		Water	L23-My003740	1		х				х						
9	QC04	May 15, 2023		Water	L23-My003740	2 X												
Test	Counts					1	7	1	7	7	7	1	7					

Environment Testing

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	μg/L: micrograms per litre
ppm: parts per million	ppb: parts per billion	%: Percentage
org/100 mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres
CFU: Colony forming unit		

Terms

APHA	American Public Health Association
coc	Chain of Custody
СР	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
ТВТО	Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	-					
TRH C6-C9	mg/L	< 0.02		0.02	Pass	
TRH C10-C14	mg/L	< 0.02		0.02	Pass	
TRH C15-C28	mg/L	< 0.04		0.04	Pass	
TRH C29-C36	mg/L	< 0.04		0.04	Pass	
Method Blank				-		
втех	1					
Benzene	mg/L	< 0.001		0.001	Pass	
Toluene	mg/L	< 0.001		0.001	Pass	
Ethylbenzene	mg/L	< 0.001		0.001	Pass	
m&p-Xylenes	mg/L	< 0.002		0.002	Pass	
o-Xylene	mg/L	< 0.001		0.001	Pass	
Xylenes - Total*	mg/L	< 0.003		0.003	Pass	
Method Blank						
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
Naphthalene	mg/L	< 0.001		0.001	Pass	
TRH C6-C10	mg/L	< 0.02		0.02	Pass	
Method Blank		T	1 1	1		
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	mg/L	< 0.001		0.001	Pass	
Acenaphthylene	mg/L	< 0.001		0.001	Pass	
Anthracene	mg/L	< 0.001		0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001		0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001		0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001		0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001		0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001		0.001	Pass	
Chrysene	mg/L	< 0.001		0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001		0.001	Pass	
Fluoranthene	mg/L	< 0.001		0.001	Pass	
Fluorene	mg/L	< 0.001		0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001		0.001	Pass	
Naphthalene	mg/L	< 0.001		0.001	Pass	
Phenanthrene	mg/L	< 0.001		0.001	Pass	
Pyrene	mg/L	< 0.001		0.001	Pass	
Method Blank		1		1	-	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	1					
TRH >C10-C16	mg/L	< 0.02		0.02	Pass	
TRH >C16-C34	mg/L	< 0.05		0.05	Pass	
TRH >C34-C40	mg/L	< 0.05		0.05	Pass	
Method Blank		1	I I	F		
OCOP in Water	L				_	
Aldrin	ug/L	< 0.001		0.001	Pass	
alpha-BHC (HCH)	ug/L	< 0.001		0.001	Pass	
beta-BHC (HCH)	ug/L	< 0.001		0.001	Pass	
delta-BHC (HCH)	ug/L	< 0.001		0.001	Pass	
Bifenthrin	ug/L	< 0.05		0.05	Pass	
Bromophos Ethyl	ug/L	< 0.005		0.005	Pass	
Chlordane	ug/L	< 0.002		0.002	Pass	
Chlorothalonil	ug/L	< 0.01		0.01	Pass	
Chlorpyrifos	ug/L	< 0.005		0.005	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Diazinon	ug/L	< 0.01	0.01	Pass	
Dieldrin	ug/L	< 0.001	0.001	Pass	
Endosulfan I	ug/L	< 0.001	0.001	Pass	
Endosulfan II	ug/L	< 0.001	0.001	Pass	
Endosulfan Sulfate	ug/L	< 0.001	0.001	Pass	
Endrin	ug/L	< 0.01	0.01	Pass	
Ethion	ug/L	< 0.01	0.01	Pass	
Fenitrothion	ug/L	< 0.01	0.01	Pass	
Fipronil	ug/L	< 0.02	0.02	Pass	
Hexachlorobenzene (HCB)	ug/L	< 0.001	0.001	Pass	
Heptachlor Epoxide	ug/L	< 0.001	0.001	Pass	
Heptachlor	ug/L	< 0.001	0.001	Pass	
Lindane	ug/L	< 0.001	0.001	Pass	
Malathion	ug/L	< 0.01	0.01	Pass	
Methoxychlor	ug/L	< 0.02	0.02	Pass	
o.p-DDT	ug/L	< 0.001	0.001	Pass	
Oxychlordane	ug/L	< 0.001	0.001	Pass	
p.p-DDD	ug/L	< 0.001	0.001	Pass	
p.p-DDE	ug/L	< 0.001	0.001	Pass	
p.p-DDT	ug/L	< 0.001	0.001	Pass	
Parathion Ethyl	ug/L	< 0.02	0.02	Pass	
Parathion Methyl	ug/L	< 0.02	0.02	Pass	
Trifluralin	ug/L	< 0.01	0.01	Pass	
Vinclozolin	ug/L	< 0.02	0.02	Pass	
Method Blank					
Heavy Metals	1				
Arsenic	mg/L	< 0.001	0.001	Pass	
Cadmium	mg/L	< 0.0001	0.0001	Pass	
Chromium	mg/L	< 0.001	0.001	Pass	
Copper	mg/L	< 0.001	0.001	Pass	
Lead	mg/L	< 0.001	0.001	Pass	
Mercury	mg/L	< 0.0001	0.0001	Pass	
Nickel	mg/L	< 0.001	0.001	Pass	
Zinc	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery		1		-	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	84	70-130	Pass	
TRH C10-C14	%	112	70-130	Pass	
LCS - % Recovery		1	1		
BTEX	1				
Benzene	%	104	70-130	Pass	
Toluene	%	88	70-130	Pass	
Ethylbenzene	%	99	70-130	Pass	
m&p-Xylenes	%	82	70-130	Pass	
o-Xylene	%	82	70-130	Pass	
Xylenes - Total*	%	82	70-130	Pass	
LUS - % Recovery					
I otal Recoverable Hydrocarbons - 2013 NEPM Fractions			70.400	D -	
	%	82	/0-130	Pass	
	%	84	/0-130	Pass	
LUS - % Recovery					
	0/	400	70.400	Dest	
	%	108	70-130	Pass	
Acenaphthylene	%	96	70-130	Pass	

Test		Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code	
Anthracene			%	92		70-130	Pass	
Benz(a)anthracene			%	92		70-130	Pass	
Benzo(a)pyrene			%	84		70-130	Pass	
Benzo(b&j)fluoranthene			%	90		70-130	Pass	
Benzo(g.h.i)perylene			%	91		70-130	Pass	
Benzo(k)fluoranthene			%	99		70-130	Pass	
Chrysene			%	115		70-130	Pass	
Dibenz(a.h)anthracene			%	92		70-130	Pass	
Fluoranthene			%	85		70-130	Pass	
Fluorene			%	101		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	87		70-130	Pass	
Naphthalene			%	103		70-130	Pass	
Phenanthrene			%	98		70-130	Pass	
Pyrene			%	81		70-130	Pass	
LCS - % Recovery				1	1	1		
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions						
TRH >C10-C16			%	108		70-130	Pass	
LCS - % Recovery				1				
OCOP in Water								
Aldrin			%	101		60-120	Pass	
Dieldrin			%	118		60-120	Pass	
Endrin			%	117		60-120	Pass	
Heptachlor			%	105		60-120	Pass	
Lindane			%	120		60-120	Pass	
p.p-DDT			%	92		60-120	Pass	
LCS - % Recovery				1				
Heavy Metals								
Arsenic		%	105		80-120	Pass		
Cadmium		%	94		80-120	Pass		
Chromium		%	107		80-120	Pass		
Copper		%	105		80-120	Pass		
Lead			%	106		80-120	Pass	
Mercury			%	117		80-120	Pass	
Nickel			%	105		80-120	Pass	
Zinc			%	107		80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				1	I I			
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1				
TRH C6-C9	L23-My0034686	NCP	%	82		70-130	Pass	
TRH C10-C14	L23-My0034686	NCP	%	100		70-130	Pass	
Spike - % Recovery				1	I I			
BTEX				Result 1				
Benzene	L23-My0034686	NCP	%	87		70-130	Pass	
Toluene	L23-My0034686	NCP	%	92		70-130	Pass	
Ethylbenzene	L23-My0034686	NCP	%	88		70-130	Pass	
m&p-Xylenes	L23-My0034686	NCP	%	84		70-130	Pass	
o-Xylene	L23-My0034686	NCP	%	90		70-130	Pass	
Xylenes - Total*	L23-My0034686	NCP	%	86		70-130	Pass	
Spike - % Recovery								
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1				
Naphthalene	L23-My0034686	NCP	%	99		70-130	Pass	
TRH C6-C10	L23-My0034686	NCP	%	80		70-130	Pass	
Spike - % Recovery				1				
Polycyclic Aromatic Hydrocarbons				Result 1				

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Acenaphthene	L23-My0035598	NCP	%	111			70-130	Pass	
Acenaphthylene	L23-My0035598	NCP	%	98			70-130	Pass	
Anthracene	L23-My0035598	NCP	%	101			70-130	Pass	
Benz(a)anthracene	L23-My0035598	NCP	%	89			70-130	Pass	
Benzo(a)pyrene	L23-My0035598	NCP	%	88			70-130	Pass	
Benzo(b&i)fluoranthene	L23-Mv0035598	NCP	%	98			70-130	Pass	
Benzo(a.h.i)pervlene	L23-Mv0035598	NCP	%	108			70-130	Pass	
Benzo(k)fluoranthene	L23-My0035598	NCP	%	107			70-130	Pass	
Chrysene	L 23-My0035598	NCP	%	117			70-130	Pass	
Dibenz(a h)anthracene	L 23-My0035598	NCP	%	106			70-130	Pass	
Fluoranthene	L 23-My0035598	NCP	%	96			70-130	Pass	
Fluorene	L 23-My0035598	NCP	%	104			70-130	Pass	
Indeno(1,2,3-cd)pyrene	L 23-My0035598	NCP	%	100			70-130	Pass	
Nanhthalene	L23-My0035598	NCP	%	104			70-130	Pass	
Phenanthrene	L23-My0035598	NCP	%	97			70-130	Pass	
Pyrene	L23-My0035598	NCP	%	87			70-130	Pass	
Spike - % Pecovery	L23-My0033338	NCI	/0	07			70-130	1 833	
Total Recoverable Hydrocarbons -	2012 NEPM Eract	ions		Popult 1					
	1.22 My0024686		0/.	06			70 120	Page	
Spike - % Percevery	L23-My0034080	NCF	/0	90			70-130	газэ	
Spike - % Recovery				Bogult 1					
	1.22 My0025680		0/				75 405	Deee	
Alsenic	L23-My0035660	NCP	<u>%</u>	106			75-125	Pass	
Charamium	L23-My0035680	NCP	<u>%</u>	96			75-125	Pass	
Chromium	L23-My0035680	NCP	%	105			75-125	Pass	
	L23-My0035680	NCP	%	102			75-125	Pass	
Lead	L23-My0035680	NCP	%	104			75-125	Pass	
Mercury	L23-My0035680	NCP	%	122			75-125	Pass	
	L23-My0035680	NCP	%	103			75-125	Pass	
Zinc	L23-My0035680	NCP	%	102			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				r					
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	L23-My0037571	NCP	mg/L	< 0.2	< 0.2	<1	30%	Pass	
TRH C10-C14	L23-My0037571	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C15-C28	L23-My0037571	NCP	mg/L	< 0.04	< 0.04	<1	30%	Pass	
TRH C29-C36	L23-My0037571	NCP	mg/L	< 0.04	< 0.04	<1	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	L23-My0037571	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Toluene	L23-My0037571	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Ethylbenzene	L23-My0037571	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
m&p-Xylenes	L23-My0037571	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
o-Xylene	L23-My0037571	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Xylenes - Total*	L23-My0037571	NCP	mg/L	< 0.03	< 0.03	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	L23-My0037571	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
TRH C6-C10	L23-My0037571	NCP	mg/L	< 0.2	< 0.2	<1	30%	Pass	
Duplicate	,								
Polycyclic Aromatic Hydrocarbons				Result 1	Result 2	RPD			
Acenaphthene	L23-My0041711	NCP	ma/L	< 0.001	< 0.001	<1	30%	Pass	
Acenaphthylene	L23-My0041711	NCP	ma/L	< 0.001	< 0.001	<1	30%	Pass	
Anthracene	L23-Mv0041711	NCP	ma/l	< 0.001	< 0.001	<1	30%	Pass	
Benz(a)anthracene	L23-Mv0041711	NCP	ma/l	< 0.001	< 0.001	<1	30%	Pass	
					- 0.001	~ 1	0070	1 400	

Duplicate									
Polycyclic Aromatic Hydrocarbons	3			Result 1	Result 2	RPD			
Benzo(a)pyrene	L23-My0041711	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(b&j)fluoranthene	L23-My0041711	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(g.h.i)perylene	L23-My0041711	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(k)fluoranthene	L23-My0041711	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chrysene	L23-My0041711	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibenz(a.h)anthracene	L23-My0041711	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluoranthene	L23-My0041711	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluorene	L23-My0041711	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	L23-My0041711	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Naphthalene	L23-My0041711	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Phenanthrene	L23-My0041711	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Pyrene	L23-My0041711	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	L23-My0037571	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH >C16-C34	L23-My0037571	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH >C34-C40	L23-My0037571	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	L23-My0035641	NCP	mg/L	0.008	0.008	6.1	30%	Pass	
Cadmium	L23-My0035641	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Chromium	L23-My0035641	NCP	mg/L	0.005	0.005	2.2	30%	Pass	
Copper	L23-My0035641	NCP	mg/L	0.002	0.002	8.8	30%	Pass	
Lead	L23-My0035641	NCP	mg/L	0.002	0.002	3.1	30%	Pass	
Mercury	L23-My0035641	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	L23-My0035641	NCP	mg/L	0.003	0.003	8.8	30%	Pass	
Zinc	L23-My0035641	NCP	mg/L	0.045	0.042	5.8	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code	Description
G02	The LORs have been raised as there was insufficient sample provided for analysis
N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised by:

Andrew Harvey	Analytical Services Manager
Douglas Todd	Senior Analyst-Metal
Patrick Patfield	Senior Analyst-Organic
Patrick Patfield	Senior Analyst-Volatile
Paul Nottle	Senior Analyst-Organic

of Pg

Kim Rodgers General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

16-18 Hayden Court Myaree WA 6154 ph +61 8 9317 2505 fax +61 8 9317 4163 lab@mpl.com.au www.mpl.com.au

Certificate of Analysis PEE1077

Client Details

Client	Galt Environmental Pty Ltd (WA)
Contact	Accounts Payable
Address	50 Edward Street, Osborne Park, WA, 6017
Sample Details	

Your Reference	WAE230033 Victoria Park
Number of Samples	1 Soil
Date Samples Received	16/05/2023
Date Samples Registered	15/05/2023

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details

Date Results Requested by	23/05/2023
Date of Issue	23/05/2023

NATA Accreditation Number 2901. This document shall not be reproduced except in full. Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with *.

Authorisation Details

Asbestos Approved By	Analysed by Asbestos Approved Analyst: Eugene Chan Analysed by Asbestos Approved Analyst: Thomas Edwards Authorised by Asbestos Approved Signatory: Thomas Edwards
Results Approved By	Heram Halim, Operations Manager Michael Hall, Inorganics & Metals Supervisor Thomas Edwards, OHL Supervisor Travis Carey, Organics Supervisor
Laboratory Manager	Michael Kubiak

Samples in this Report

Envirolab ID	Sample ID	Matrix	Date Sampled	Date Received
PEE1077-01	QC02	Soil	15/05/2023	16/05/2023

Volatile TRH and BTEX (Soil)

Envirolab ID	Units	PQL	PEE1077-01
Your Reference		•	QC02
Date Sampled			15/05/2023
TRH C6-C9	mg/kg	25	<25
TRH C6-C10	mg/kg	25	<25
TRH C6-C10 less BTEX (F1)	mg/kg	25	<25
Methyl tert butyl ether (MTBE)	mg/kg	0.50	<0.50
Benzene	mg/kg	0.20	<0.20
Toluene	mg/kg	0.50	<0.50
Ethylbenzene	mg/kg	1.0	<1.0
meta+para Xylene	mg/kg	2.0	<2.0
ortho-Xylene	mg/kg	1.0	<1.0
Total Xylene	mg/kg	3.0	<3.0
Naphthalene (value used in F2 calc)	mg/kg	1.0	<1.0
Surrogate aaa-Trifluorotoluene	%		94.8

Semi-volatile TRH (Soil)

Envirolab ID	Units	PQL	PEE1077-01	
Your Reference			QC02	
Date Sampled			15/05/2023	
TRH C10-C14	mg/kg	50	<50	
TRH C15-C28	mg/kg	100	<100	
TRH C29-C36	mg/kg	100	<100	
Total +ve TRH C10-C36	mg/kg	50	<50	
TRH >C10-C16	mg/kg	50	<50	
TRH >C10-C16 less Naphthalene F2	mg/kg	50	<50	
TRH >C16-C34 (F3)	mg/kg	100	<100	
TRH >C34-C40 (F4)	mg/kg	100	<100	
Total +ve TRH >C10-C40	mg/kg	50	<50	
Surrogate o-Terphenyl	%		90.9	

Polycyclic Aromatic Hydrocarbons (Soil)

Envirolab ID	Units	PQL	PEE1077-01
Your Reference			QC02
Date Sampled			15/05/2023
Naphthalene	mg/kg	0.10	<0.10
Acenaphthylene	mg/kg	0.10	<0.10
Acenaphthene	mg/kg	0.10	<0.10
Fluorene	mg/kg	0.10	<0.10
Phenanthrene	mg/kg	0.10	<0.10
Anthracene	mg/kg	0.10	<0.10
Fluoranthene	mg/kg	0.10	<0.10
Pyrene	mg/kg	0.10	<0.10
Benzo(a)anthracene	mg/kg	0.10	<0.10
Chrysene	mg/kg	0.10	<0.10
Benzo(b,j,k)fluoranthene	mg/kg	0.20	<0.20
Benzo(a)pyrene	mg/kg	0.050	<0.050
Indeno(1,2,3-c,d)pyrene	mg/kg	0.10	<0.10
Dibenzo(a,h)anthracene	mg/kg	0.10	<0.10
Benzo(g,h,i)perylene	mg/kg	0.10	<0.10
Total +ve PAH	mg/kg	0.050	<0.050
Benzo(a)pyrene TEQ calc zero	mg/kg	0.50	<0.50
Benzo(a)pyrene TEQ calc Half	mg/kg	0.50	<0.50
Benzo(a)pyrene TEQ calc PQL	mg/kg	0.50	<0.50
Surrogate p-Terphenyl-D14	%		78.2

Organochlorine Pesticides (Soil)

Envirolab ID Your Reference Date Sampled	Units	PQL	PEE1077-01 QC02 15/05/2023
alpha-BHC	mg/kg	0.10	<0.10
Hexachlorobenzene	mg/kg	0.10	<0.10
beta-BHC	mg/kg	0.10	<0.10
gamma-BHC	mg/kg	0.10	<0.10
delta-BHC	mg/kg	0.10	<0.10
Heptachlor	mg/kg	0.10	<0.10
Aldrin	mg/kg	0.10	<0.10
Heptachlor epoxide	mg/kg	0.10	<0.10
trans-Chlordane	mg/kg	0.10	<0.10
cis-Chlordane	mg/kg	0.10	<0.10
Endosulfan I	mg/kg	0.10	<0.10
4,4'-DDE	mg/kg	0.10	<0.10
Dieldrin	mg/kg	0.10	<0.10
Endrin	mg/kg	0.10	<0.10
4,4'-DDD	mg/kg	0.10	<0.10
Endosulfan II	mg/kg	0.10	<0.10
Endrin aldehyde	mg/kg	0.10	<0.10
4,4'-DDT	mg/kg	0.10	<0.10
Endosulfan sulfate	mg/kg	0.10	<0.10
Endrin ketone	mg/kg	0.10	<0.10
Methoxychlor	mg/kg	0.10	<0.10
Mirex	mg/kg	0.10	<0.10
Total +ve OCP	mg/kg	0.10	<0.10
Surrogate 2-Chlorophenol-D4	%		73.6

Organophosphorus Pesticides (Soil)

Envirolab ID	Units	PQL	PEE1077-01	
Your Reference			QC02	
Date Sampled			15/05/2023	
Dichlorvos	mg/kg	0.10	<0.10	
Dimethoate	mg/kg	0.10	<0.10	
Diazinon	mg/kg	0.10	<0.10	
Chlorpyrifos-methyl	mg/kg	0.10	<0.10	
Ronnel	mg/kg	0.10	<0.10	
Fenitrothion	mg/kg	0.10	<0.10	
Malathion	mg/kg	0.10	<0.10	
Chlorpyrifos	mg/kg	0.10	<0.10	
Parathion	mg/kg	0.10	<0.10	
Bromophos-ethyl	mg/kg	0.10	<0.10	
Ethion	mg/kg	0.10	<0.10	
Coumaphos	mg/kg	0.10	<0.10	
Disulfoton	mg/kg	0.10	<0.10	
Fenamiphos	mg/kg	0.10	<0.10	
Fenthion	mg/kg	0.10	<0.10	
Methidathion	mg/kg	0.10	<0.10	
Mevinphos	mg/kg	0.10	<0.10	
Parathion-methyl	mg/kg	0.10	<0.10	
Phorate	mg/kg	0.10	<0.10	
Phosalone	mg/kg	0.10	<0.10	
Azinphos-methyl	mg/kg	0.10	<0.10	
Surrogate 2-Chlorophenol-D4	%		73.6	

Acid Extractable Metals (Soil)

Envirolab ID	Units	PQL	PEE1077-01
Your Reference			QC02
Date Sampled			15/05/2023
Arsenic	mg/kg	2.0	2.3
Cadmium	mg/kg	0.40	<0.40
Chromium	mg/kg	1.0	7.4
Copper	mg/kg	1.0	<1.0
Mercury	mg/kg	0.10	<0.10
Nickel	mg/kg	1.0	<1.0
Lead	mg/kg	1.0	4.5
Zinc	mg/kg	1.0	8.4

Inorganics - Moisture (Soil)

Envirolab ID	Units	PQL	PEE1077-01
Your Reference			QC02
Date Sampled			15/05/2023
Moisture	%	0.10	5.6

Asbestos ID in Soil

Client ID	Envirolab ID	Description	Result
QC02	PEE1077-01	89g Coarse Sand	No Asbestos Detected >0.1g/kg
			No trace fibres detected
			Organic fibres detected

Method Summary

Method ID	Methodology Summary
ASB-001_AS4964	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004. When mineral fibres of unknown type are detected by polarized light microscopy including dispersion staining, the fibres detected may or may not be asbestos fibres. To confirm the identities, another independent analytical technique may be required.
INORG-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
METALS-020	Determination of various metals by ICP-OES.
METALS-021	Determination of Mercury by Cold Vapour AAS.
ORG-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis. Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
ORG-022	Determination of semi-volatile organic compounds (SVOCs) by GC-MS. Water samples are extracted by LLE and soils using DCM/Acetone/Methanol.
ORG-022_OC	Determination of semi-volatile organic compounds (SVOCs) by GC-MS. Water samples are extracted by LLE and soils using DCM/Acetone/Methanol.
ORG-022_PAH	Determination of semi-volatile organic compounds (SVOCs) by GC-MS. Water samples are extracted by LLE and solids using DCM/Acetone/Methanol. For PAHs:- Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. 1. 'TEQ PQL' values are assuming all contributing PAHs reported as <pql "total="" 'teq="" +ve="" 2.="" 3.="" <pql="" a="" above.="" actually="" all="" and="" approach="" approaches="" are="" as="" assuming="" at="" be="" below="" between="" but="" calculation="" calculations,="" can="" conservative="" contribute="" contributing="" example,="" false="" for="" give="" given="" half="" hence="" individual="" is="" least="" lowest="" may="" mid-point="" more="" most="" negative="" not="" note,="" of="" pahs="" pahs"="" pahs.<="" positive="" pql="" pql'="" pql.="" present="" present.="" reflective="" reported="" simply="" stipulated="" sum="" susceptible="" teq="" teqs="" th="" that="" the="" therefore,="" this="" to="" total="" values="" when="" zero'="" zero.=""></pql>
ORG-023_F1_TOT	Determination of volatile organic compounds (VOCs) by P&T-GC-MS. Water samples are analysed directly by purge and trap GC-MS. Solids are extracted with Methanol, diluted and analysed by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.
Result Definitions

Identifier	Description
NR	Not reported
NEPM	National Environment Protection Measure
NS	Not specified
LCS	Laboratory Control Sample
RPD	Relative Percent Difference
>	Greater than
<	Less than
PQL	Practical Quantitation Limit
INS	Insufficient sample for this test
NA	Test not required
NT	Not tested
DOL	Samples rejected due to particulate overload (air filters only)
RFD	Samples rejected due to filter damage (air filters only)
RUD	Samples rejected due to uneven deposition (air filters only)
##	Indicates a laboratory acceptance criteria outlier, for further details, see Result Comments and/or QC Comments

Quality Control Definitions

Blank

This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, and is determined by processing solvents and reagents in exactly the same manner as for samples.

Surrogate Spike

Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

LCS (Laboratory Control Sample)

This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Matrix Spike

A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

Duplicate

This is the complete duplicate analysis of a sample from the process batch. The sample selected should be one where the analyte concentration is easily measurable.

Certificate of Analysis PEE1077

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria. Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction. Spikes for Physical and Aggregate Tests are not applicable. For VOCs in water samples, three vials are required for duplicate or spike analysis.

General Acceptance Criteria (GAC) - Analyte specific criteria applies for some analytes and is reflected in QC recovery tables.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% - see ELN-P05 QAQC tables for details (available on request); <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was typically insufficient in order to satisfy laboratory QA/QC protocols.

Miscellaneous Information

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached. We have taken the sampling date as being the date received at the laboratory.

Two significant figures are reported for the majority of tests and with a high degree of confidence, for results <10*PQL, the second significant figure may be in doubt i.e. has a relatively high degree of uncertainty and is provided for information only.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS where sediment/solids are included by default.

Urine Analysis - The BEI values listed are taken from the 2022 edition of TLVs and BEIs Threshold Limits by ACGIH.

Air volume measurements are not covered by Envirolab's NATA accreditation.

Data Quality Assessment Summary PEE1077

Client Details

Client	Galt Environmental Pty Ltd (WA)
Your Reference	WAE230033 Victoria Park
Date Issued	23/05/2023

Recommended Holding Time Compliance

No recommended holding time exceedances

Quality Control and QC Frequency

QC Type	Compliant	Details
Blank	Yes	No Outliers
LCS	Yes	No Outliers
Duplicates	No	Duplicate Outliers Exist - See detailed list below
Matrix Spike	No	Matrix Spike Outliers Exist - See detailed list below
Surrogates / Extracted Internal Standards	Yes	No Outliers
QC Frequency	Yes	No Outliers

Surrogates/Extracted Internal Standards, Duplicates and/or Matrix Spikes are not always relevant/applicable to certain analyses and matrices. Therefore, said QC measures are deemed compliant in these situations by default. See Laboratory Acceptance Criteria for more information

Data Quality Assessment Summary PEE1077

Recommended Holding Time Compliance

Analysis	Sample Number(s)	Date Sampled	Date Extracted	Date Analysed	Compliant
vTRH&MBTEXN Soil	1	15/05/2023	17/05/2023	18/05/2023	Yes
sTRH Soil	1	15/05/2023	17/05/2023	19/05/2023	Yes
PAH Soil	1	15/05/2023	17/05/2023	18/05/2023	Yes
OCP Soil	1	15/05/2023	17/05/2023	18/05/2023	Yes
OPP (21 list) Soil	1	15/05/2023	17/05/2023	18/05/2023	Yes
Metals Soil	1	15/05/2023	17/05/2023	18/05/2023	Yes
Metals-Hg Soil	1	15/05/2023	17/05/2023	18/05/2023	Yes
Moisture Soil	1	15/05/2023	17/05/2023	18/05/2023	Yes
Asbestos in soil Soil	1	15/05/2023	23/05/2023	23/05/2023	Yes

Outliers: Duplicates

METALS-020 | Acid Extractable Metals (Soil) | Batch BEE1949

Sample ID	Duplicate ID	Analyte	% Limits	RPD
BEE1949-DUP1#	DUP1	Copper	40.00	52.0
BEE1949-DUP3#	DUP3	Copper	40.00	51.5

ORG-022_PAH | Polycyclic Aromatic Hydrocarbons (Soil) | Batch BEE1953

Sample ID	Duplicate ID	Analyte	% Limits	RPD
BEE1953-DUP1#	DUP1	Benzo(a)pyrene	50.00	200[2]
BEE1953-DUP1#	DUP1	Fluoranthene	50.00	200[2]
BEE1953-DUP1#	DUP1	Pyrene	50.00	200[2]

Outliers: Matrix Spike

METALS-020 | Acid Extractable Metals (Soil) | Batch BEE1949

Sample ID	Analyte	% Limits	% Recovery
BEE1949-MS1#	Copper	70 - 130	##[1]

Quality Control PEE1077

ORG-023_F1_TOT | Volatile TRH and BTEX (Soil) | Batch BEE1951

				DUP1	DUP2	LCS %	Spike %
Analyte	Units	PQL	Blank	BEE1951-DUP1#	BEE1951-DUP2#		BEE1951-MS1#
				Samp QC RPD %	Samp QC RPD %		
TRH C6-C9	mg/kg	25	<25	<25 <25 [NA]	<25 <25 [NA]	89.3	88.4
TRH C6-C10	mg/kg	25	<25	<25 <25 [NA]	<25 <25 [NA]	87.2	86.4
TRH C6-C10 less BTEX (F1)	mg/kg	25	<25	<25 <25 [NA]	<25 <25 [NA]	[NA]	[NA]
Methyl tert butyl ether (MTBE)	mg/kg	0.50	<0.50			[NA]	[NA]
Benzene	mg/kg	0.20	<0.20	<0.20 <0.20 [NA]	<0.20 <0.20 [NA]	78.6	78.0
Toluene	mg/kg	0.50	<0.50	<0.50 <0.50 [NA]	<0.50 <0.50 [NA]	79.9	78.6
Ethylbenzene	mg/kg	1.0	<1.0	<1.0 <1.0 [NA]	<1.0 <1.0 [NA]	79.1	78.7
meta+para Xylene	mg/kg	2.0	<2.0	<2.0 <2.0 [NA]	<2.0 <2.0 [NA]	77.0	76.5
ortho-Xylene	mg/kg	1.0	<1.0	<1.0 <1.0 [NA]	<1.0 <1.0 [NA]	79.6	78.6
Total Xylene	mg/kg	3.0	<3.0	<3.0 <3.0 [NA]	<3.0 <3.0 [NA]	[NA]	[NA]
Naphthalene (value used in F2 calc)	mg/kg	1.0	<1.0	<1.0 <1.0 [NA]	<1.0 <1.0 [NA]	[NA]	[NA]
Surrogate aaa-Trifluorotoluene	%		110	96.5 96.8	102 99.9	104	101

The QC reported was not specifically part of this workorder but formed part of the QC process batch.

ORG-020 | Semi-volatile TRH (Soil) | Batch BEE1953

				DUP1	DUP2	LCS %	Spike %
Analyte	Units	PQL	Blank	BEE1953-DUP1#	BEE1953-DUP2#		BEE1953-MS1#
				Samp QC RPD %	Samp QC RPD %		
TRH C10-C14	mg/kg	50	<50	<50 <50 [NA]	<50 <50 [NA]	79.0	75.0
TRH C15-C28	mg/kg	100	<100	<100 <100 [NA]	<100 <100 [NA]	85.3	81.4
TRH C29-C36	mg/kg	100	<100	<100 <100 [NA]	<100 <100 [NA]	89.3	82.3
TRH >C10-C16	mg/kg	50	<50	<50 <50 [NA]	<50 <50 [NA]	82.1	79.3
TRH >C16-C34 (F3)	mg/kg	100	<100	<100 <100 [NA]	<100 <100 [NA]	75.8	71.9
TRH >C34-C40 (F4)	mg/kg	100	<100	<100 <100 [NA]	<100 <100 [NA]	94.7	85.6
Surrogate o-Terphenyl	%		92.3	92.9/91.6	90.2/91.0	92.4	88.9

The QC reported was not specifically part of this workorder but formed part of the QC process batch.

ORG-022_PAH | Polycyclic Aromatic Hydrocarbons (Soil) | Batch BEE1953

				DUP1	DUP2	LCS %	Spike %
Analyte	Units	PQL	Blank	BEE1953-DUP1#	BEE1953-DUP2#		BEE1953-MS2#
-		-		Samp QC RPD %	Samp QC RPD %		
Naphthalene	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	98.5	95.0
Acenaphthylene	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	[NA]	[NA]
Acenaphthene	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	95.7	92.0
Fluorene	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	94.5	90.9
Phenanthrene	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	95.8	93.9
Anthracene	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	[NA]	[NA]
Fluoranthene	mg/kg	0.10	<0.10	<0.10 0.111 200 [2]	<0.10 <0.10 [NA]	93.6	90.4
Pyrene	mg/kg	0.10	<0.10	<0.10 0.108 200 [2]	<0.10 <0.10 [NA]	91.7	90.0
Benzo(a)anthracene	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	[NA]	[NA]
Chrysene	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	91.4	88.1
Benzo(b,j,k)fluoranthene	mg/kg	0.20	<0.20	<0.20 <0.20 [NA]	<0.20 <0.20 [NA]	[NA]	[NA]
Benzo(a)pyrene	mg/kg	0.050	<0.050	<0.050 0.0518 200 [2]	<0.050 <0.050 [NA]	98.3	95.4
Indeno(1,2,3-c,d)pyrene	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	[NA]	[NA]
Dibenzo(a,h)anthracene	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	[NA]	[NA]
Benzo(g,h,i)perylene	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	[NA]	[NA]
Surrogate p-Terphenyl-D14	%		76.2	72.7 75.5	76.5 78.3	78.1	76.4

The QC reported was not specifically part of this workorder but formed part of the QC process batch.

Quality Control PEE1077

ORG-022_OC|Organochlorine Pesticides (Soil) | Batch BEE1953

				DUP1	DUP2	LCS %	Spike %
Analyte	Units	PQL	Blank	BEE1953-DUP1#	BEE1953-DUP2#		BEE1953-MS2#
				Samp QC RPD %	Samp QC RPD %		
alpha-BHC	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	93.2	88.2
Hexachlorobenzene	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	[NA]	[NA]
beta-BHC	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	89.4	85.5
gamma-BHC	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	[NA]	[NA]
delta-BHC	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	[NA]	[NA]
Heptachlor	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	91.1	87.3
Aldrin	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	91.5	90.2
Heptachlor epoxide	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	88.9	86.9
trans-Chlordane	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	[NA]	[NA]
cis-Chlordane	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	[NA]	[NA]
Endosulfan I	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	[NA]	[NA]
4,4'-DDE	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	89.4	87.2
Dieldrin	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	90.8	88.2
Endrin	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	88.9	86.4
4,4'-DDD	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	86.8	85.1
Endosulfan II	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	[NA]	[NA]
Endrin aldehyde	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	[NA]	[NA]
4,4'-DDT	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	[NA]	[NA]
Endosulfan sulfate	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	90.7	87.7
Endrin ketone	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	[NA]	[NA]
Methoxychlor	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	[NA]	[NA]
Mirex	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	[NA]	[NA]
Surrogate 2-Chlorophenol-D4	%		76.2	72.3 72.5	73.3 73.9	78.9	72.9

The QC reported was not specifically part of this workorder but formed part of the QC process batch.

ORG-022 | Organophosphorus Pesticides (Soil) | Batch BEE1953

				DUP1	DUP2	LCS %	Spike %
Analyte	Units	PQL	Blank	BEE1953-DUP1#	BEE1953-DUP2#		BEE1953-MS2#
•				Samp QC RPD %	Samp QC RPD %		
Dichlorvos	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	102	93.9
Dimethoate	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	[NA]	[NA]
Diazinon	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	[NA]	[NA]
Chlorpyrifos-methyl	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	89.7	85.7
Ronnel	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	90.0	87.1
Fenitrothion	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	85.1	79.0
Malathion	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	90.6	86.1
Chlorpyrifos	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	86.0	82.7
Parathion	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	88.6	82.2
Bromophos-ethyl	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	[NA]	[NA]
Ethion	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	86.7	84.6
Coumaphos	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	[NA]	[NA]
Disulfoton	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	[NA]	[NA]
Fenamiphos	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	[NA]	[NA]
Fenthion	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	[NA]	[NA]
Methidathion	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	[NA]	[NA]
Mevinphos	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	[NA]	[NA]
Parathion-methyl	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	[NA]	[NA]
Phorate	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	[NA]	[NA]
Phosalone	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	[NA]	[NA]
Azinphos-methyl	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	[NA]	[NA]
Surrogate 2-Chlorophenol-D4	%		76.2	72.3 72.5	73.3 73.9	78.9	72.9

The QC reported was not specifically part of this workorder but formed part of the QC process batch.

Quality Control PEE1077

METALS-020 | Acid Extractable Metals (Soil) | Batch BEE1949

				DUP1	DUP2	LCS %	Spike %
Analyte	Units	PQL	Blank	BEE1949-DUP1#	BEE1949-DUP2#		BEE1949-MS1#
-		-		Samp QC RPD %	Samp QC RPD %		
Arsenic	mg/kg	2.0	<2.0	12.2 11.0 10.1	14.9 19.2 25.4	105	112
Cadmium	mg/kg	0.40	<0.40	<0.40 <0.40 [NA]	<0.40 <0.40 [NA]	105	85.7
Chromium	mg/kg	1.0	<1.0	17.8 16.1 10.1	11.9 12.7 6.54	106	96.6
Copper	mg/kg	1.0	<1.0	194 114 52.0	<1.0 <1.0 [NA]	111	##[1]
Lead	mg/kg	1.0	<1.0	15.1 14.1 6.93	10.4 8.23 23.6	102	90.2
Mercury	mg/kg	0.10	<0.10	<0.10 <0.10 [NA] [3]	<0.10 <0.10 [NA]	86.4	80.0
Nickel	mg/kg	1.0	<1.0	17.6 18.9 6.94	1.74 1.70 2.03	105	87.3
Zinc	mg/kg	1.0	<1.0	48.1 46.2 4.03	10.4 9.47 9.36	103	78.9
				DUP3	DUP4	LCS %	
Analyte	Units	POL	Blank	DUP3 BEE1949-DUP3#	DUP4 BEE1949-DUP4#	LCS %	
Analyte	Units	PQL	Blank	DUP3 BEE1949-DUP3# Samp QC RPD %	DUP4 BEE1949-DUP4# Samp QC RPD %	LCS %	
Analyte Arsenic	Units mg/kg	PQL	Blank	DUP3 BEE1949-DUP3# Samp QC RPD % 12.2 9.95 20.1	DUP4 BEE1949-DUP4# Samp QC RPD % 14.9 15.8 5.80	LCS %	
Analyte Arsenic Cadmium	Units mg/kg mg/kg	PQL 2 0.4	Blank	DUP3 BEE1949-DUP3# Samp QC RPD % 12.2 9.95 20.1 <0.40 <0.40 [NA]	DUP4 BEE1949-DUP4# Samp QC RPD % 14.9 15.8 5.80 <0.40 <0.40 [NA]	LCS %	
Analyte Arsenic Cadmium Chromium	Units mg/kg mg/kg mg/kg	PQL 2 0.4 1	Blank	DUP3 BEE1949-DUP3# Samp QC RPD % 12.2 9.95 20.1 <0.40 <0.40 [NA] 17.8 15.4 14.6	DUP4 BEE1949-DUP4# Samp QC RPD % 14.9 15.8 5.80 <0.40 <0.40 [NA] 11.9 8.59 32.5	LCS % [NA] [NA] [NA]	
Analyte Arsenic Cadmium Chromium Copper	Units mg/kg mg/kg mg/kg mg/kg	PQL 2 0.4 1 1	Blank	DUP3 BEE1949-DUP3# Samp QC RPD % 12.2 9.95 20.1 <0.40 <0.40 [NA]	DUP4 BEE1949-DUP4# Samp QC RPD % 14.9 15.8 5.80 <0.40 <0.40 [NA] 11.9 8.59 32.5 <1.0 <1.0 [NA]	LCS % [NA] [NA] [NA]	
Analyte Arsenic Cadmium Chromium Copper Lead	Units mg/kg mg/kg mg/kg mg/kg mg/kg	PQL 2 0.4 1 1 1 1	Blank	DUP3 BEE1949-DUP3# Samp QC RPD % 12.2 9.95 20.1 <0.40 <0.40 [NA] 17.8 15.4 14.6 194 114 51.5 15.1 13.8 9.35	DUP4 BEE1949-DUP4# Samp QC RPD % 14.9 15.8 5.80 <0.40 <0.40 [NA]	LCS % [NA] [NA] [NA] [NA] [NA]	
Arsenic Cadmium Chromium Copper Lead Mercury	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	PQL 2 0.4 1 1 1 0.1	Blank	DUP3 BEE 1949-DUP3# Samp QC RPD % 12.2 9.95 20.1 <0.40 <0.40 [NA] 17.8 15.4 14.6 194 114 51.5 15.1 13.8 9.35 <0.10 <0.10 [NA] [3]	DUP4 BEE1949-DUP4# Samp QC RPD % 14.9 15.8 5.80 <0.40 <0.40 [NA]	LCS % [NA] [NA] [NA] [NA] [NA]	
Arsenic Cadmium Chromium Copper Lead Mercury Nickel	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	PQL 2 0.4 1 1 1 0.1 1 1	Blank	DUP3 BEE1949-DUP3# Samp QC RPD % 12.2 9.95 20.1 <0.40 <0.40 [NA] 17.8 15.4 14.6 194 114 51.5 15.1 13.8 9.35 <0.10 <0.10 [NA] [3] 17.6 16.2 8.43	DUP4 BEE1949-DUP4# Samp QC RPD % 14.9 15.8 5.80 <0.40 <0.40 [NA]	LCS % [NA] [NA] [NA] [NA] [NA] [NA] [NA] [NA]	
Analyte Arsenic Cadmium Chromium Copper Lead Mercury Nickel Zinc	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	PQL 2 0.4 1 1 1 0.1 1 1 1 1 1	Blank	DUP3 BEE1949-DUP3# Samp QC RPD % 12.2 9.95 20.1 <0.40 <0.40 [NA] 17.8 15.4 14.6 194 114 51.5 15.1 13.8 9.35 <0.10 <0.10 [NA] [3] 17.6 16.2 8.43 48.1 47.7 0.678	DUP4 BEE1949-DUP4# Samp QC RPD % 14.9 15.8 5.80 <0.40 <0.40 [NA]	LCS % [NA] [NA] [NA] [NA] [NA] [NA] [NA] [NA]	

The QC reported was not specifically part of this workorder but formed part of the QC process batch.

INORG-008 | Inorganics - Moisture (Soil) | Batch BEE1942

				DUP1	DUP2	LCS %
Analyte	Units	PQL	Blank	BEE1942-DUP1#	BEE1942-DUP2#	
-		-		Samp QC RPD %	Samp QC RPD %	
Moisture	%	0.1		3.24 3.56 9.41	17.2 16.0 7.00	[NA]

The QC reported was not specifically part of this workorder but formed part of the QC process batch.

QC Comments

Identifier	Description
[1]	Spike recovery is outside routine acceptance criteria (70-130%), this may be due to suspected non-homogeneity and/or matrix interference effects. However, an acceptable recovery was achieved for the LCS.
[2]	Duplicate %RPD may be flagged as an outlier to routine laboratory acceptance, however, where one or both results are <10*PQL, the RPD acceptance criteria increases exponentially.
[3]	The laboratory duplicate RPD acceptance criteria has been exceeded. Sample heterogeneity suspected. 3 sets of data have been provided to help demonstrate the degree of non-homogeneity within the sample as well as assessing the analytical precision.

ATTACHMENT E

Soil Analytical Results

www.galtenv.com.au 50 Edward Street OSBORNE PARK WA 6017 Galt Environmental Pty Ltd

ABN: 96 520 810 622

				Field ID	BH01/0.0	BH02/2.0	BH03/1.5	BH04/0.0	BH05/1.5	BH06/1.0
			NEPM 2013 Table 1A(3) Res	NFPM 2013 Table 1A(1) Hills	15 Way 2023	15 May 2023	15 May 2023	15 Way 2023	15 Way 2023	15 Way 2023
	Unit	EQL	A/B Soil HSL for Vapour Intrusion, Sand	Res A Soil						
Asbestos										
AF % asbestos (weighted average)	Comment				1	1	1	1	1	1
AF in Soil (as asbestos) Asbestos (Trace)	% w/w Comment	0.001			<0.001 1	<0.001 1	<0.001 1	<0.001 1	<0.001 1	<0.001 1
Asbestos Detected	-				1	1	1	1	1	1
FA % asbestos (weighted average)	Comment				1	1	1	1	1	1
FA in Soil (as asbestos) Fibres Identified and estimated	% w/w	0.001			<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Asbestos Content (%)	Comment				1	1	1	1	1	1
Total Analytical Fraction Total Asbestos	g g/kg	0.1			210 <0.1	146 <0.1	318 <0.1	336 <0.1	330 <0.1	311 <0.1
Total Dry Mass	g	0.1			210	146	318	336	330	311
Sample Description	-				1	1	1	1	1	1
Mass Mass Asbestos in FA	g	0.0005			<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
NA					1010000	10.0005	40.0005	40.0000	10.0005	
Total AF Sample Preparation	g	0.0005			<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Analysed Material	Comment	-			1	1	1	1	1	1
BTEX Naphthalene (VOC)	mg/kg	0.5	3		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzene	mg/kg	0.1	0.5 0.5 0.5 0.5		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	55		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Xylene (m & p) Xylene (o)	mg/kg mg/kg	0.2			<0.2 <0.1	<0.2 <0.1	<0.2 <0.1	<0.2 <0.1	<0.2 <0.1	<0.2 <0.1
Xylene Total	mg/kg	0.3	40 60 95 170		<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
C6-C10 Fraction (F1)	mg/kg	20			<20	<20	<20	<20	<20	<20
C6-C10 (F1 minus BTEX)	mg/kg	20	45 70 110 200		<20	<20	<20	<20	<20	<20
>C10-C16 Fraction (F2 minus	···6/ N8	30			~JU	~30	~JU	~50	- 00-	00~
Naphthalene) >C16-C34 Fraction (F3)	mg/kg mg/kg	50 100	110 240 440		<50 <100	<50 <100	<50 <100	<50 <100	<50 <100	<50 <100
>C34-C40 Fraction (F4)	mg/kg	100			<100	<100	<100	<100	<100	<100
Halogenated Benzenes		100			×100	~100	×100	~100		
Hexachlorobenzene	mg/kg	0.01		10	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Trifluralin	mg/kg	0.2			<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Inorganics										
Moisture Content (dried @ 103°C)	%	1			3.3	5.0	5.0	6.1	8.4	16
Metals Arsenic	mg/kg	5		100	<5	<5	<5	<5	<5	<5
Cadmium	mg/kg	0.1		20	<0.1	<0.1	<0.1	0.1	<0.1	<0.1
Copper	mg/kg mg/kg	1		6,000	3.4	<1	6.8	4.1	4.4	1.5
Lead Mercury	mg/kg mg/kg	1		<u>300</u> 40	17 0.03	5.4 <0.02	51 0.04	40 <0.02	26 <0.02	13
Nickel	mg/kg	1		400	<1	<1	1.5	<1	<1	<1
Zinc Organochlorine Pesticides	mg/ kg	1		7,400	55	18	66	48	170	91
2,4-DDT	mg/kg	0.01			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
a-BHC	mg/kg	0.01			<0.01	<0.01	<0.01	<0.01	<0.02	<0.01
Aldrin b-BHC	mg/kg mg/kg	0.01			<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01
Chlordane	mg/kg	0.01		50	<0.01	<0.01	0.03	0.02	0.01	0.02
d-BHC DDD	mg/kg mg/kg	0.01			<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01
DDT Dieldrin	mg/kg	0.01			<0.01	<0.01	0.01	<0.01	<0.01	0.02
Endosulfan I	mg/kg	0.01			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Endosulfan II Endosulfan sulphate	mg/kg mg/kg	0.01			<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01
Endrin g-BHC (Lindono)	mg/kg	0.01		10	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Heptachlor	mg/kg	0.01		6	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Heptachlor epoxide Methoxychlor	mg/kg mg/kg	0.01		300	<0.01 <0.2	<0.01 <0.2	<0.01 <0.2	0.01 <0.2	<0.01 <0.2	<0.01 <0.2
Oxychlordane	mg/kg	0.01			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chlorpyrifos	mg/kg	0.02		160	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Diazinon Ethion	mg/kg mg/kg	0.2			<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Fenitrothion	mg/kg	0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
PAH	mg/ kg	0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Anthracene	mg/kg	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)anthracene Benzo(a) pyrene	mg/kg mg/kg	0.5			<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
Benzo(b+j)fluoranthene	mg/kg	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g,n,i)perviene Benzo(k)fluoranthene	mg/kg mg/kg	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chrysene Dibenz(a.h)anthracene	mg/kg mg/kg	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	mg/kg	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene Indeno(1,2,3-c,d)pyrene	mg/kg mg/kg	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	mg/kg	0.5	3		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Pyrene	mg/kg	0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
PAHs (Sum of total) Pesticides	mg/kg	0.5		300	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bifenthrin	mg/kg	0.2		600	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromoprios	mg/Kg	0.05			<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
C6-C9 Fraction	mg/kg	20			<20	<20	<20	<20	<20	<20
C15-C28 Fraction	mg/kg mg/kg	50			<20	<20	<20	<20	<20	<20 <50
C29-C36 Fraction C10-C36 Fraction (Sum)	mg/kg mg/kg	50 50			<50 <50	<50 <50	66 66	<50 <50	<50 <50	<50 <50

ATTACHMENT F

Understanding Your Report

www.galtenv.com.au 50 Edward Street OSBORNE PARK WA 6017 Galt Environmental Pty Ltd

ABN: 96 520 810 622

UNDERSTANDING YOUR REPORT

GALT FORM PMP29 Rev3

1. EXPECTATIONS OF THE REPORT

This document has been prepared to clarify what is and is not provided in your report. It is intended to inform you of what your realistic expectations of this report should be and how to manage your risks associated with the conditions on site.

Geotechnical engineering and environmental science are less exact than other engineering and scientific disciplines. We include this information to help you understand where our responsibilities begin and end. You should read and understand this information. Please contact us if you do not understand the report or this explanation. We have extensive experience in a wide variety of projects and we can help you to manage your risk.

2. THIS REPORT RELATES TO PROJECT-SPECIFIC CONDITIONS

This report was developed for a unique set of project-specific conditions to meet the needs of the nominated client. It took into account the following:

- the project objectives as we understood them and as described in this report;
- the specific site mentioned in this report; and
- the current and proposed development at the site.

It should not be used for any purpose other than that indicated in the report. You should not rely on this report if any of the following conditions apply:

- the report was not written for you;
- the report was not written for the site specific to your development;
- the report was not written for your project (including a development at the correct site but other than that listed in the report); or
- the report was written before significant changes occurred at the site (such as a development or a change in ground conditions).

You should always inform us of changes in the proposed project (including minor changes) and request an assessment of their impact.

Where we are not informed of developments relevant to your report, we cannot be held responsible or liable for problems that may arise as a consequence.

Where design is to be carried out by others using information provided by us, we recommend that we be involved in the design process by being engaged for consultation with other members of the project team. Furthermore, we recommend that we be able to review work produced by other members of the project team that relies on information provided in our report.

3. DATA PROVIDED BY THIRD PARTIES

Where data is provided by third parties, it will be identified as such in our reports. We necessarily rely on the completeness and accuracy of data provided by third parties in order to draw conclusions presented in our reports. We are not responsible for omissions, incomplete or inaccurate data associated with third party data, including where we have been requested to provide advice in relation to field investigation data provided by third parties.

4. SOIL LOGS

Our reports often include logs of intrusive and non-intrusive investigation techniques. These logs are based on our interpretation of field data and laboratory results. The logs should only be read in conjunction with the report they were issued with and should not be re-drawn for inclusion in other documents not prepared by us.

5. THIRD PARTY RELIANCE

We have prepared this report for use by the client. This report must be regarded as confidential to the client and the client's professional advisors. We do not accept any responsibility for contents of this document from any party other than the nominated client. We take no responsibility for any damages suffered by a third party because of any decisions or actions they may make based on this report. Any reliance or decisions made by a third party based on this report are the responsibility of the third party and not of us.

6. CHANGE IN SUBSURFACE CONDITIONS

The recommendations in this report are based on the ground conditions that existed at the time when the study was undertaken. Changes in ground conditions can occur in numerous ways including anthropogenic events (such as construction or contaminating activities on or adjacent to the site) or natural events (such as floods, groundwater fluctuations or earthquakes). We should be consulted prior to use of this report so that we can comment on its reliability. It is important to note that where ground conditions have changed, additional sampling, testing or analysis may be required to fully assess the changed conditions.

7. SUBSURFACE CONDITIONS DURING CONSTRUCTION

Practical constraints mean that we cannot know every minute detail about the subsurface conditions at a particular site. We use professional judgement to form an opinion about the subsurface conditions at the site. Some variation to our evaluated conditions is likely and significant variation is possible. Accordingly, our report should not be considered as final as it is developed from professional judgement and opinion.

The most effective means of dealing with unanticipated ground conditions is to engage us for construction support. We can only finalise our recommendations by observing actual subsurface conditions encountered during construction. We cannot accept liability for a report's recommendations if we cannot observe construction.

8. ENVIRONMENTAL AND GEOTECHNICAL ISSUES

Unless specifically mentioned otherwise in our report, environmental considerations are not addressed in geotechnical reports. Similarly, geotechnical issues are not addressed in environmental reports. The investigation techniques used for geotechnical investigations can differ from those used for environmental investigations. It is the client's responsibility to satisfy themselves that geotechnical and environmental considerations have been taken into account for the site.

Geotechnical advice presented in a Galt Environmental report has been provided by Galt Geotechnics under a sub-contract agreement. Similarly, environmental advice presented in a Galt Geotechnics report has been provided by Galt Environmental under a sub-contract agreement.

Unless specifically noted otherwise, no parties shall draw any inferences about the applicability of the Western Australian state government landfill levy from the contents of this document.

O:\Administration\Standard Forms and Documents\GEPL Forms\PMP29-Rev4 Understanding your Report Env Logo.docx